Germe (mathématiques)La notion de germe en mathématiques capture les propriétés « locales » d'un phénomène, par exemple la coïncidence infinitésimale entre fonctions. C'est une notion initialement analytique qui possède en fait une structure algébrique naturelle, et qui apparaît naturellement en géométrie algébrique et en théorie des groupes de Lie. La notion de germe permet d'approcher ce qui se passe localement sur un objet mathématique (espace topologique, variété différentielle, faisceau...).
Prolongement analytiqueEn analyse complexe, la théorie du prolongement analytique détaille l'ensemble des propriétés et techniques relatives au prolongement des fonctions holomorphes (ou analytiques). Elle considère d'abord la question du prolongement dans le plan complexe. Puis elle aborde des formes plus générales d'extension qui permettent de prendre en compte les singularités et les complications topologiques qui les accompagnent. La théorie fait alors intervenir soit le concept assez ancien et peu opérant de fonction multiforme, soit le concept plus puissant de surface de Riemann.
Théorème de JordanEn mathématiques, le théorème de Jordan est un théorème de topologie plane. Il est célèbre par le caractère apparemment intuitif de son énoncé et la difficulté de sa démonstration. précise M. Dostal à son sujet. Si, à l'aide d'un crayon, on dessine une ligne continue (on ne lève pas le crayon) qui ne se croise pas et qui termine là où elle commence, la zone de la feuille non dessinée se décompose en deux parties, l'intérieur de la figure, qui est borné, et l'extérieur, qui ne le serait pas si la feuille ne l'était pas.
Forme automorphedroite|vignette|500x500px|La fonction êta de Dedekind est une forme automorphe dans le plan complexe. Une forme automorphique, en analyse harmonique et théorie des nombres, est une fonction d'un groupe topologique G à valeurs dans le corps des nombres complexes (ou un espace vectoriel complexe) qui est invariante sous l'action d'un sous-groupe discret du groupe topologique et qui vérifie certaines conditions de dérivabilité et de croissance à l'infini.
Friedrich Moritz HartogsFriedrich Moritz Hartogs, dit Fritz Hartogs (né le à Bruxelles, décédé le à Munich), est un mathématicien allemand connu pour ses importantes contributions à la théorie des fonctions de plusieurs variables complexes (voir lemme de Hartogs et ). On lui doit également, en théorie des ensembles, un résultat sur les ensembles bien ordonnés (voir ordinal de Hartogs). En butte, en tant que juif, aux persécutions nazies, isolé de son milieu professionnel et de ses amis, il choisit de divorcer pour protéger sa famille (sa femme n'était pas juive) et finit par se suicider.
Complex torusIn mathematics, a complex torus is a particular kind of complex manifold M whose underlying smooth manifold is a torus in the usual sense (i.e. the cartesian product of some number N circles). Here N must be the even number 2n, where n is the complex dimension of M. All such complex structures can be obtained as follows: take a lattice Λ in a vector space V isomorphic to Cn considered as real vector space; then the quotient group is a compact complex manifold. All complex tori, up to isomorphism, are obtained in this way.
Identity theoremIn real analysis and complex analysis, branches of mathematics, the identity theorem for analytic functions states: given functions f and g analytic on a domain D (open and connected subset of or ), if f = g on some , where has an accumulation point in D, then f = g on D. Thus an analytic function is completely determined by its values on a single open neighborhood in D, or even a countable subset of D (provided this contains a converging sequence together with its limit).
Théorème intégral de CauchyEn analyse complexe, le théorème intégral de Cauchy, ou de Cauchy-Goursat, est un important résultat concernant les intégrales curvilignes de fonctions holomorphes dans le plan complexe. D'après ce théorème, si deux chemins différents relient les deux mêmes points et si une fonction est holomorphe « entre » les deux chemins, alors les deux intégrales de cette fonction suivant ces chemins sont égales. Le théorème est habituellement formulé pour les lacets (c'est-à-dire les chemins dont le point de départ est confondu avec le point d'arrivée) de la manière suivante.
Real coordinate spaceIn mathematics, the real coordinate space of dimension n, denoted Rn or , is the set of the n-tuples of real numbers, that is the set of all sequences of n real numbers. Special cases are called the real line R1 and the real coordinate plane R2. With component-wise addition and scalar multiplication, it is a real vector space, and its elements are called coordinate vectors. The coordinates over any basis of the elements of a real vector space form a real coordinate space of the same dimension as that of the vector space.
Point de branchementEn analyse complexe, le point de branchement ou point de ramification est un point singulier d'une fonction analytique complexe multiforme, telle que la fonction racine n-ième ou le logarithme complexe. En ce point s'échangent les différentes déterminations. Géométriquement, cette notion délicate est liée à la surface de Riemann associée à la fonction et relève de la question de la monodromie. Pour donner une image, cela correspond à un escalier en colimaçon dont l'axe (réduit à un point) est placé à la singularité, desservant plusieurs (voire une infinité) d'étages.