Dodécaèdre tronquéthumb|Patron (géométrie) En géométrie, le dodécaèdre tronqué est un solide d'Archimède. Il possède 12 faces décagonales régulières, 20 faces triangulaires régulières, 60 sommets et 90 arêtes. Ce polyèdre peut être formé à partir d'un dodécaèdre par troncature des coins, donc les faces pentagonales deviennent des décagones et les coins deviennent des triangles. Les coordonnées cartésiennes suivantes définissent les sommets d'un dodécaèdre tronqué centré à l'origine : où est le nombre d'or.
Pavage carréLe pavage carré est, en géométrie, un pavage du plan euclidien constitué de carrés. C'est l'un des trois pavages réguliers du plan euclidien, avec le pavage triangulaire et le pavage hexagonal. Le pavage carré possède un symbole de Schläfli de {4,4}, signifiant que chaque sommet est entouré par 4 carrés. Les symétries du pavage carré sont les symétries du carré, les translations, et leurs combinaisons. Elles forment un groupe de symétrie dénommé p4m. Les symétries du carré forment un sous-groupe, dénommé Groupe diédral d'ordre 8.
Solide d'ArchimèdeEn géométrie, un solide d'Archimède est un polyèdre convexe semi-régulier, fortement symétrique, composé d'au moins deux sortes de polygones réguliers se rencontrant à des sommets identiques. Ils sont distincts des solides de Platon, qui sont composés d'une seule sorte de polygones se rencontrant à des sommets identiques, et des solides de Johnson, dont les faces polygonales régulières ne se rencontrent pas à des sommets identiques. La symétrie des solides d'Archimède exclut les membres du groupe diédral, les prismes et les antiprismes.
Figure de sommetEn géométrie, une figure de sommet d'un sommet donné d'un polytope est, de façon intuitive, l'ensemble des points directement reliés à ce sommet par une arête. Ceci s’applique également aux pavages infinis, ou pavages remplissant l’espace avec des cellules polytopiques. De façon plus précise, une figure de sommet pour un n-polytope est un (n-1)-polytope. Ainsi, une figure de sommet pour un polyèdre est une figure polygonale, et la figure de sommet pour un polychore est une figure polyèdrique.
Icosaèdre tronquéLicosaèdre tronqué est un solide d'Archimède. Il comprend 12 faces pentagonales régulières, 20 faces hexagonales régulières, 60 sommets et 90 arêtes. Ce polyèdre peut être construit à partir d'un icosaèdre (solide formé de 20 faces triangulaires régulières) avec une troncature des 12 sommets telle qu'un tiers de chaque arête est enlevé à chaque extrémité. Ceci crée 12 nouvelles faces pentagonales, et remplace les 20 faces triangulaires d'origine par des hexagones réguliers.
Figure isogonaleEn géométrie, un polytope (un polygone ou un polyèdre, par exemple) est dit isogonal si tous ses sommets sont identiques. Autrement dit, chaque sommet est entouré du même type de face dans le même ordre et avec les mêmes angles entre les faces correspondantes. Plus précisément : le groupe de symétrie du polytope agit transitivement sur l'ensemble des sommets. thumb|Un octogone isogonal convexe et ses quatre axes de symétrie. Tous les polygones réguliers, qu'ils soient convexes ou étoilés, sont isogonaux.
Cuboctaèdre tronquéthumb|Patron (géométrie) Le grand rhombicuboctaèdre est un solide d'Archimède. Il possède 12 faces carrées régulières, 8 faces hexagonales régulières et 6 faces octogonales régulières. Ainsi que 48 sommets et 72 arêtes. Puisque chacune de ses faces possède un centre de symétrie (ou de manière équivalente, une rotation à 180°), le cuboctaèdre tronqué est un zonoèdre (à neuf générateurs). On peut rencontrer d'autres noms tels que : Grand cuboctaèdre Cuboctaèdre rhombitronqué Cuboctaèdre omnitronqué Le nom cuboctaèdre tronqué, donné à l'origine par Johannes Kepler est un peu inexact.
Petit rhombicosidodécaèdrevignette|Patron. Le petit rhombicosidodécaèdre est un solide d'Archimède. Il possède 20 faces triangulaires régulières, 30 faces carrées régulières, 12 faces pentagonales régulières, 60 sommets et 120 arêtes. Le nom rhombicosidodécaèdre fait référence au fait que les 30 faces carrées sont placées dans les mêmes plans que les 30 faces du triacontaèdre rhombique qui est le dual de l'icosidodécaèdre. Il peut aussi être appelé un dodécaèdre étendu ou un icosaèdre étendu à partir des opérations de troncature du solide uniforme.
Cuboctaèdrethumb|Cuboctaèdre vu comme cube rectifié. thumb|Patron de cuboctaèdre. Un cuboctaèdre est un polyèdre à 14 faces régulières, dont huit sont des triangles équilatéraux et six sont des carrés. Il comporte : 12 sommets identiques, chacun joignant deux triangles et deux carrés opposés deux à deux ; 24 arêtes identiques, chacune commune à un triangle et à un carré. Il s'agit donc d'un polyèdre quasi-régulier, c’est-à-dire un solide d'Archimède (uniformité des sommets) avec en plus, une uniformité des arêtes.
Pavage petit rhombitrihexagonalIn geometry, the rhombitrihexagonal tiling is a semiregular tiling of the Euclidean plane. There are one triangle, two squares, and one hexagon on each vertex. It has Schläfli symbol of rr{3,6}. John Conway calls it a rhombihexadeltille. It can be considered a cantellated by Norman Johnson's terminology or an expanded hexagonal tiling by Alicia Boole Stott's operational language. There are three regular and eight semiregular tilings in the plane. There is only one uniform coloring in a rhombitrihexagonal tiling.