Complete homogeneous symmetric polynomialIn mathematics, specifically in algebraic combinatorics and commutative algebra, the complete homogeneous symmetric polynomials are a specific kind of symmetric polynomials. Every symmetric polynomial can be expressed as a polynomial expression in complete homogeneous symmetric polynomials. The complete homogeneous symmetric polynomial of degree k in n variables X1, ..., Xn, written hk for k = 0, 1, 2, ..., is the sum of all monomials of total degree k in the variables.
Polynôme symétriqueEn mathématiques, un polynôme symétrique est un polynôme en plusieurs indéterminées, invariant par permutation de ses indéterminées. Ils jouent notamment un rôle dans les relations entre coefficients et racines. Soit A un anneau commutatif unitaire. Un polynôme Q(T, ..., T) en n indéterminées à coefficients dans A est dit symétrique si pour toute permutation s de l'ensemble d'indices {1, ..., n}, l'égalité suivante est vérifiée : Exemples Pour n = 1, tout polynôme est symétrique.
Stanley symmetric functionIn mathematics and especially in algebraic combinatorics, the Stanley symmetric functions are a family of symmetric functions introduced by in his study of the symmetric group of permutations. Formally, the Stanley symmetric function Fw(x1, x2, ...) indexed by a permutation w is defined as a sum of certain fundamental quasisymmetric functions. Each summand corresponds to a reduced decomposition of w, that is, to a way of writing w as a product of a minimal possible number of adjacent transpositions.
Power sum symmetric polynomialIn mathematics, specifically in commutative algebra, the power sum symmetric polynomials are a type of basic building block for symmetric polynomials, in the sense that every symmetric polynomial with rational coefficients can be expressed as a sum and difference of products of power sum symmetric polynomials with rational coefficients. However, not every symmetric polynomial with integral coefficients is generated by integral combinations of products of power-sum polynomials: they are a generating set over the rationals, but not over the integers.
Polynôme de SchurEn mathématiques, les polynômes de Schur, nommés ainsi d'après le mathématicien Issai Schur, sont des polynômes symétriques particuliers, indexés par les partitions d'entiers, et qui généralisent les polynômes symétriques élémentaires et les polynômes symétriques homogènes complets. En théorie des représentations, ce sont les caractères des représentations polynomiales irréductibles du groupe général linéaire. Les polynômes de Schur forment une base de l'espace de tous les polynômes symétriques.
Théorème fondamental des fonctions symétriquesEn mathématiques, et plus particulièrement en algèbre commutative, le théorème fondamental des fonctions symétriques, souvent appelé « théorème fondamental des polynômes symétriques » ou « théorème de Newton », stipule que tout polynôme symétrique en n indéterminées à coefficients dans un anneau (commutatif) A s'exprime de façon unique par une fonction polynomiale des n polynômes symétriques élémentaires. Autrement dit, les n polynômes symétriques élémentaires forment une partie génératrice de l'algèbre des polynômes symétriques en n indéterminées sur A et sont algébriquement indépendants sur A.
AlgèbreL'algèbre (de l’arabe الجبر, al-jabr) est une branche des mathématiques qui permet d'exprimer les propriétés des opérations et le traitement des équations et aboutit à l'étude des structures algébriques. Selon l’époque et le niveau d’études considérés, elle peut être décrite comme : une arithmétique généralisée, étendant à différents objets ou grandeurs les opérations usuelles sur les nombres ; la théorie des équations et des polynômes ; depuis le début du , l’étude des structures algébriques (on parle d'algèbre générale ou abstraite).
Partition d'un entierEn mathématiques, une partition d'un entier (parfois aussi appelée partage d'un entier) est une décomposition de cet entier en une somme d'entiers strictement positifs (appelés parties ou sommants), à l'ordre près des termes (à la différence du problème de composition tenant compte de l'ordre des termes). Une telle partition est en général représentée par la suite des termes de la somme, rangés par ordre décroissant. Elle est visualisée à l'aide de son diagramme de Ferrers, qui met en évidence la notion de partition duale ou conjuguée.