In mathematics and computer science, a primality certificate or primality proof is a succinct, formal proof that a number is prime. Primality certificates allow the primality of a number to be rapidly checked without having to run an expensive or unreliable primality test. "Succinct" usually means that the proof should be at most polynomially larger than the number of digits in the number itself (for example, if the number has b bits, the proof might contain roughly b2 bits).
Primality certificates lead directly to proofs that problems such as primality testing and the complement of integer factorization lie in NP, the class of problems verifiable in polynomial time given a solution. These problems already trivially lie in co-NP. This was the first strong evidence that these problems are not NP-complete, since if they were, it would imply that NP is subset of co-NP, a result widely believed to be false; in fact, this was the first demonstration of a problem in NP intersect co-NP not known, at the time, to be in P.
Producing certificates for the complement problem, to establish that a number is composite, is straightforward: it suffices to give a nontrivial divisor. Standard probabilistic primality tests such as the Baillie–PSW primality test, the Fermat primality test, and the Miller–Rabin primality test also produce compositeness certificates in the event where the input is composite, but do not produce certificates for prime inputs.
The concept of primality certificates was historically introduced by the Pratt certificate, conceived in 1975 by Vaughan Pratt, who described its structure and proved it to have polynomial size and to be verifiable in polynomial time. It is based on the Lucas primality test, which is essentially the converse of Fermat's little theorem with an added condition to make it true:
Lucas' theorem: Suppose we have an integer a such that:
an − 1 ≡ 1 (mod n),
for every prime factor q of n − 1, it is not the case that a(n − 1)/q ≡ 1 (mod n).
Then n is prime.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
The goal of the course is to introduce basic notions from public key cryptography (PKC) as well as basic number-theoretic methods and algorithms for cryptanalysis of protocols and schemes based on PKC
This course introduces the theory and applications of optimization. We develop tools and concepts of optimization and decision analysis that enable managers in manufacturing, service operations, marke
This course introduces the basics of cryptography. We review several types of cryptographic primitives, when it is safe to use them and how to select the appropriate security parameters. We detail how
Le test de primalité AKS (aussi connu comme le test de primalité Agrawal-Kayal-Saxena et le test cyclotomique AKS) est un algorithme de preuve de primalité déterministe et généraliste (fonctionne pour tous les nombres) publié le par trois scientifiques indiens nommés Manindra Agrawal, Neeraj Kayal et Nitin Saxena (A.K.S). Ce test est le premier en mesure de déterminer la primalité d'un nombre dans un temps polynomial. Ce test a été publié dans un article scientifique intitulé « PRIMES is in P ».
vignette|Le 39e nombre premier de Mersenne découvert à ce jour pour un article sur la primalité Un test de primalité est un algorithme permettant de savoir si un nombre entier est premier. Le test le plus simple est celui des divisions successives : pour tester N, on vérifie s’il est divisible par l’un des entiers compris au sens large entre 2 et N-1. Si la réponse est négative, alors N est premier, sinon il est composé.
En mathématiques, le petit théorème de Fermat est un résultat de l'arithmétique modulaire, qui peut aussi se démontrer avec les outils de l'arithmétique élémentaire. Il s'énonce comme suit : « si p est un nombre premier et si a est un entier non divisible par p, alors ap–1 – 1 est un multiple de p », autrement dit (sous les mêmes conditions sur a et p), ap–1 est congru à 1 modulo p : Un énoncé équivalent est : « si p est un nombre premier et si a est un entier quelconque, alors ap – a est un multiple de p » : Il doit son nom à Pierre de Fermat, qui l'énonce pour la première fois en .
This work studies distributed primal-dual strategies for adaptation and learning over networks from streaming data. Two first-order methods are considered based on the Arrow-Hurwicz (AH) and augmented Lagrangian (AL) techniques. Several results are reveale ...
IEEE2015
,
Proximal splitting methods are standard tools for nonsmooth optimization. While primal-dual methods have become very popular in the last decade for their flexibility, primal methods may still be preferred for two reasons: acceleration schemes are more effe ...
IEEE2021
, ,
Physically based differentiable rendering algorithms propagate derivatives through realistic light transport simulations and have applications in diverse areas including inverse reconstruction and machine learning. Recent progress has led to unbiased metho ...