Explore le surajustement, la validation croisée et la régularisation dans l'apprentissage automatique, en mettant l'accent sur la complexité du modèle et l'importance de la force de régularisation.
Explore la méthode des moments, le compromis biais-variance, la cohérence, le principe de plug-in et le principe de vraisemblance dans lestimation de point.
Explore les applications de théorie des valeurs extrêmes, les stratégies d'estimation et les techniques de modélisation pour l'analyse statistique des extrêmes dans les séries chronologiques.
Couvre les prédicteurs de moyenne locaux, y compris les voisins les plus proches K et les estimateurs Nadaraya-Watson, ainsi que la régression linéaire locale et ses applications.
Explore le surajustement, la régularisation et la validation croisée dans l'apprentissage automatique, soulignant l'importance de l'expansion des fonctionnalités et des méthodes du noyau.
Discute des arbres de décision et des forêts aléatoires, en se concentrant sur leur structure, leur optimisation et leur application dans les tâches de régression et de classification.