Somme (catégorie)En mathématiques, dans une catégorie, la somme ou coproduit peut s'exprimer par une propriété universelle ou de manière équivalente comme foncteur représentable. Soit une catégorie et une famille d'objets de . On cherche un objet X ainsi qu'une famille de morphismes tel que pour tout objet Y de et pour toute famille de morphismes , il existe un unique morphisme tel que pour tout indice i, on a . Si un tel objet X existe, on l'appelle somme des . Lorsqu'elle existe, la somme des X représente le foncteur qui à un objet Y de associe le produit cartésien .
Matrice (mathématiques)thumb|upright=1.5 En mathématiques, les matrices sont des tableaux d'éléments (nombres, caractères) qui servent à interpréter en termes calculatoires, et donc opérationnels, les résultats théoriques de l'algèbre linéaire et même de l'algèbre bilinéaire. Toutes les disciplines étudiant des phénomènes linéaires utilisent les matrices. Quant aux phénomènes non linéaires, on en donne souvent des approximations linéaires, comme en optique géométrique avec les approximations de Gauss.
Théorie des localesEn mathématiques, la théorie des locales (ou théorie des lieux, ou parfois topologie sans points, en anglais : pointless topology) est une approche de la topologie issue de la théorie des catégories et évitant de mentionner les points ; certains des « espaces » (appelés locales) étudiés par la théorie ne contiennent aucun point au sens usuel.
SubcategoryIn mathematics, specifically , a subcategory of a C is a category S whose are objects in C and whose morphisms are morphisms in C with the same identities and composition of morphisms. Intuitively, a subcategory of C is a category obtained from C by "removing" some of its objects and arrows. Let C be a category. A subcategory S of C is given by a subcollection of objects of C, denoted ob(S), a subcollection of morphisms of C, denoted hom(S).
Catégorie des anneauxEn mathématiques, la catégorie des anneaux est une construction qui rend compte abstraitement des propriétés des anneaux en algèbre. Dans ce contexte, « anneau » signifie toujours anneau unitaire. La catégorie des anneaux, notée Ring, est la catégorie définie ainsi : Les objets sont les anneaux ; Les morphismes sont les morphismes d'anneaux, avec la composition usuelle, et l'identité est la fonction identité sur un anneau donné. La sous-catégorie pleine de Ring, dont les objets sont les anneaux commutatifs, forme la catégorie des anneaux commutatifs, notée CRing.
Catégorie concrèteEn mathématiques, et plus précisément en théorie des catégories, une catégorie concrète sur une catégorie est un couple où est une catégorie et est un foncteur fidèle. Le foncteur est appelé le foncteur d'oubli et est appelée la catégorie base pour . Si n'est pas précisée, il est sous-entendu qu'il s'agit de la catégorie des ensembles . Dans ce cas, les objets de la catégorie sont des ensembles munis de certaines structures, et les morphismes de cette catégorie sont les morphismes entre ensembles munis de ces structures.
Stone dualityIn mathematics, there is an ample supply of categorical dualities between certain of topological spaces and categories of partially ordered sets. Today, these dualities are usually collected under the label Stone duality, since they form a natural generalization of Stone's representation theorem for Boolean algebras. These concepts are named in honor of Marshall Stone. Stone-type dualities also provide the foundation for pointless topology and are exploited in theoretical computer science for the study of formal semantics.
Catégorie additiveLes catégories additives jouent un rôle essentiel en théorie des catégories. De très nombreuses catégories rencontrées en pratique sont en effet additives. Toute catégorie abélienne (telle que la catégorie des groupes abéliens, ou celle des modules à gauche sur un anneau, ou encore celle des faisceaux de modules sur un espace localement annelé) est additive. Néanmoins, dès qu'on munit d'une topologie des objets appartenant à une catégorie abélienne, et qu'on exige des morphismes qu'ils soient des applications continues, on obtient une catégorie qui n'est généralement plus abélienne, mais qui est souvent additive.
Catégorie discrèteEn théorie des catégories, une branche des mathématiques, une catégorie discrète est une catégorie dont les seuls morphismes sont les identités : homC(X, X) = {idX} pour tout objet X ; homC(X, Y) = ∅ pour tous objets X ≠ Y. L'existence des identités étant imposée par la définition de catégorie, on peut reformuler ce qui précède par une condition sur la cardinalité des ensembles de morphismes : | hom C ( X, Y ) | vaut 1 lorsque X = Y et 0 lorsque X ≠Y . Autrement dit, le nombre de morphismes de chaque ensembles de morphismes est minimal.
Espace de Stonevignette|Un ensemble fini de points isolés les uns des autres est un exemple d'espace de Stone. En mathématiques, plus précisément en topologie, un espace de Stone est un espace topologique compact qui est « le moins connexe possible », au sens où l'ensemble vide et les singletons sont ses seules parties connexes. Le concept d'espace de Stone et ses propriétés de base ont été découverts et étudiés par Marshall Stone en 1936. Un espace de Stone est un espace compact totalement discontinu. Tout espace fini discret est de Stone.