Concepts associés (16)
Métaheuristique
Une métaheuristique est un algorithme d’optimisation visant à résoudre des problèmes d’optimisation difficile (souvent issus des domaines de la recherche opérationnelle, de l'ingénierie ou de l'intelligence artificielle) pour lesquels on ne connaît pas de méthode classique plus efficace. Les métaheuristiques sont généralement des algorithmes stochastiques itératifs, qui progressent vers un optimum global (c'est-à-dire l'extremum global d'une fonction), par échantillonnage d’une fonction objectif.
Recuit simulé
En algorithmique, le recuit simulé est une méthode empirique (métaheuristique) d'optimisation, inspirée d'un processus, le recuit, utilisé en métallurgie. On alterne dans cette dernière des cycles de refroidissement lent et de réchauffage (recuit) qui ont pour effet de minimiser l'énergie du matériau. Cette méthode est transposée en optimisation pour trouver les extrema d'une fonction. Elle a été mise au point par trois chercheurs de la société IBM, S. Kirkpatrick, C.D. Gelatt et M.P. Vecchi en 1983, et indépendamment par V.
Recherche locale (optimisation)
En algorithmique, la recherche locale est une méthode générale utilisée pour résoudre des problèmes d'optimisation, c'est-à-dire des problèmes où l'on cherche la meilleure solution dans un ensemble de solutions candidates. La recherche locale consiste à passer d'une solution à une autre solution proche dans l'espace des solutions candidates (l'espace de recherche) jusqu'à ce qu'une solution considérée comme optimale soit trouvée, ou que le temps imparti soit dépassé.
Optimisation combinatoire
L’optimisation combinatoire, (sous-ensemble à nombre de solutions finies de l'optimisation discrète), est une branche de l'optimisation en mathématiques appliquées et en informatique, également liée à la recherche opérationnelle, l'algorithmique et la théorie de la complexité. Dans sa forme la plus générale, un problème d'optimisation combinatoire (sous-ensemble à nombre de solutions finies de l'optimisation discrète) consiste à trouver dans un ensemble discret un parmi les meilleurs sous-ensembles (ou solutions) réalisables, la notion de meilleure solution étant définie par une fonction objectif.
Méthode hill-climbing
vignette|graphe de la méthode de hill-climbing La méthode hill-climbing ou méthode d' est une méthode d'optimisation permettant de trouver un optimum local parmi un ensemble de configurations. Le hill-climbing une méthode générale qui prend en entrée trois objets : une configuration, une fonction qui pour chaque configuration donne un ensemble de configurations voisines, et une fonction-objectif qui permet d'évaluer chaque configuration.
Optimisation linéaire en nombres entiers
L'optimisation linéaire en nombres entiers (OLNE) (ou programmation linéaire en nombres entiers (PLNE) ou integer programming (IP) ou Integer Linear Programming (ILP)) est un domaine des mathématiques et de l'informatique théorique dans lequel on considère des problèmes d'optimisation d'une forme particulière. Ces problèmes sont décrits par une fonction de coût et des contraintes linéaires, et par des variables entières.
Algorithme de colonies de fourmis
Les algorithmes de colonies de fourmis (, ou ACO) sont des algorithmes inspirés du comportement des fourmis, ou d'autres espèces formant un superorganisme, et qui constituent une famille de métaheuristiques d’optimisation. Initialement proposé par Marco Dorigo dans les années 1990, pour la recherche de chemins optimaux dans un graphe, le premier algorithme s’inspire du comportement des fourmis recherchant un chemin entre leur colonie et une source de nourriture.
Local optimum
In applied mathematics and computer science, a local optimum of an optimization problem is a solution that is optimal (either maximal or minimal) within a neighboring set of candidate solutions. This is in contrast to a global optimum, which is the optimal solution among all possible solutions, not just those in a particular neighborhood of values. Importantly, a global optimum is necessarily a local optimum, but a local optimum is not necessarily a global optimum.
Méthode de l'entropie croisée
La méthode de l'entropie-croisée (CE) attribuée à Reuven Rubinstein est une méthode générale d'optimisation de type Monte-Carlo, combinatoire ou continue, et d'échantillonnage préférentiel. La méthode a été conçue à l'origine pour la simulation d'événements rares, où des densités de probabilité très faibles doivent être estimées correctement, par exemple dans l'analyse de la sécurité des réseaux, les modèles de , ou l'analyse des performances des systèmes de télécommunication.
Problème du voyageur de commerce
vignette|Le problème de voyageur de commerce : calculer un plus court circuit qui passe une et une seule fois par toutes les villes (ici 15 villes). En informatique, le problème du voyageur de commerce, ou problème du commis voyageur, est un problème d'optimisation qui consiste à déterminer, étant donné un ensemble de villes, le plus court circuit passant par chaque ville une seule fois. C'est un problème algorithmique célèbre, qui a donné lieu à de nombreuses recherches et qui est souvent utilisé comme introduction à l'algorithmique ou à la théorie de la complexité.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.