Argument d'un nombre complexeUn argument d’un nombre complexe z non nul est une mesure (en radians, donc modulo 2π) de l'angle entre la demi-droite des nombres réels positifs (l'axe des abscisses) et celle issue de l'origine et passant par le point représenté par z (voir la figure ci-contre). Étant donné un nombre complexe z non nul, un argument de z est une mesure (en radians, donc modulo 2π) de l’angle : où M est l'image de z dans le plan complexe, c'est-à-dire le point d'affixe z.
Logarithme complexeEn mathématiques, le logarithme complexe est une fonction généralisant la fonction logarithme naturel (définie sur ]0,+∞[) au domaine C* des nombres complexes non nuls. Plusieurs définitions sont possibles. Aucune ne permet de conserver, à la fois, l'univocité, la continuité et les propriétés algébriques de la fonction logarithme. Histoire des nombres complexes La question de savoir s'il est possible de prolonger le logarithme naturel (c'est-à-dire de le définir sur un ensemble plus grand que ]0,+∞[) s'est posée dès la seconde moitié du avec les développements en série des fonctions.
Valeur principaleEn mathématiques, plus particulièrement en analyse complexe, les valeurs principales d'une fonction à plusieurs valeurs sont les valeurs le long d'une branche choisie de cette fonction, de sorte qu'elle est à valeur unique. Le cas le plus simple se présente en prenant la racine carrée d'un nombre réel positif. Par exemple, 4 a deux racines carrées : 2 et −2 ; parmi ceux-ci, la racine positive, 2, est considérée comme la racine principale et est notée . On considère la fonction logarithme complexe ln(z) .
Coordonnées cylindriquesUn système de est un système de coordonnées curvilignes orthogonales qui généralise à l'espace celui des coordonnées polaires du plan en y ajoutant une troisième coordonnée, généralement notée z, qui mesure la hauteur d'un point par rapport au plan repéré par les coordonnées polaires (de la même manière que l'on étend le système de coordonnées cartésiennes de deux à trois dimensions). Les coordonnées cylindriques servent à indiquer la position d'un point dans l'espace. Les coordonnées cylindriques ne servent pas pour les vecteurs.
Rotation formalisms in three dimensionsIn geometry, various formalisms exist to express a rotation in three dimensions as a mathematical transformation. In physics, this concept is applied to classical mechanics where rotational (or angular) kinematics is the science of quantitative description of a purely rotational motion. The orientation of an object at a given instant is described with the same tools, as it is defined as an imaginary rotation from a reference placement in space, rather than an actually observed rotation from a previous placement in space.
Azimutvignette|Azimut. L’azimut (anciennement et parfois encore orthographié azimuth) est l'angle dans le plan horizontal entre la direction d'un objet et une direction de référence. Le terme est issu de l'espagnol « acimut », lui-même issu de l'arabe السمت (as-simt), qui signifie direction. Cette référence peut être le nord géographique ou magnétique. L'azimut est mesuré depuis le nord en degrés de 0° (inclus) à 360° (exclu) dans le sens rétrograde (sens des aiguilles d'une montre) : ainsi l’est est au 90°, le sud au 180° et l’ouest au 270°.
Fonction circulaire réciproqueLes fonctions circulaires réciproques, ou fonctions trigonométriques inverses, sont les fonctions réciproques des fonctions circulaires, pour des intervalles de définition précis. Les fonctions réciproques des fonctions sinus, cosinus, tangente, cotangente, sécante et cosécante sont appelées arc sinus, arc cosinus, arc tangente, arc cotangente, arc sécante et arc cosécante. Les fonctions circulaires réciproques servent à obtenir un angle à partir de l'une quelconque de ses lignes trigonométriques, mais aussi à expliciter les primitives de certaines fonctions.
Coordonnées polairesvignette|upright=1.4|En coordonnées polaires, la position du point M est définie par la distance r et l'angle θ. vignette|upright=1.4|Un cercle découpé en angles mesurés en degrés. Les coordonnées polaires sont, en mathématiques, un système de coordonnées curvilignes à deux dimensions, dans lequel chaque point du plan est entièrement déterminé par un angle et une distance. Ce système est particulièrement utile dans les situations où la relation entre deux points est plus facile à exprimer en termes d’angle et de distance, comme dans le cas du pendule.
Matrice de rotationEn mathématiques, et plus précisément en algèbre linéaire, une matrice de rotation Q est une matrice orthogonale de déterminant 1, ce qui peut s'exprimer par les équations suivantes : QtQ = I = QQt et det Q = 1, où Qt est la matrice transposée de Q, et I est la matrice identité. Ces matrices sont exactement celles qui, dans un espace euclidien, représentent les isométries (vectorielles) directes.
Coordonnées sphériquesvignette|Illustration de la convention de l'article. La position du point P est définie par la distance et par les angles (colatitude) et (longitude).|alt= On appelle coordonnées sphériques divers systèmes de coordonnées orthogonales de l'espace analogues aux coordonnées polaires du plan. Un point de l'espace est repéré dans ces systèmes par la distance à une origine (le pôle) et par deux angles. Ils sont d'emploi courant pour le repérage géographique : l'altitude, la latitude et la longitude sont une variante de ces coordonnées.