Non-associative algebraA non-associative algebra (or distributive algebra) is an algebra over a field where the binary multiplication operation is not assumed to be associative. That is, an algebraic structure A is a non-associative algebra over a field K if it is a vector space over K and is equipped with a K-bilinear binary multiplication operation A × A → A which may or may not be associative. Examples include Lie algebras, Jordan algebras, the octonions, and three-dimensional Euclidean space equipped with the cross product operation.
Nombre hypercomplexeEn mathématiques, le terme nombre hypercomplexe est utilisé pour désigner les éléments des algèbres qui sont étendues ou qui vont plus loin que l'arithmétique des nombres complexes. Les nombres hypercomplexes ont eu un grand nombre de partisans incluant Hermann Hankel, Georg Frobenius, Eduard Study et Élie Cartan. L'étude des systèmes hypercomplexes particuliers conduit à leur représentation avec l'algèbre linéaire. Les nombres hypercomplexes sont utilisés en physique quantique pour calculer la probabilité d'un événement en tenant compte du spin de la particule.
Carré (algèbre)En arithmétique et en algèbre, le carré est une opération consistant à multiplier un élément par lui-même. La notion s’applique d’abord aux nombres, et en particulier aux entiers naturels, pour lesquels le carré est figuré par une disposition en carré au sens géométrique du terme. Un nombre qui peut s’écrire comme le carré d’un entier est appelé carré parfait. Mais plus généralement, on parle du carré d’une fonction, d’une matrice, ou de tout type d’objet mathématique pour lequel il existe une opération notée multiplicativement, comme la composition des endomorphismes ou le produit cartésien.
Algèbre à divisionEn mathématiques, et plus précisément en algèbre, une algèbre à division est une algèbre sur un corps avec la possibilité de diviser par un élément non nul (à droite et à gauche). Toutefois, dans une algèbre à division, la multiplication peut ne pas être commutative, ni même associative. Un anneau à division ou corps gauche, comme celui-des quaternions, est une algèbre associative à division sur son centre, ou sur un sous-corps de celui-ci. Soit A un anneau unitaire. L'élément 0 n'est pas inversible, sauf si A est nul.
Involution (mathématiques)En mathématiques, une involution est une application bijective qui est sa propre réciproque, c'est-à-dire par laquelle chaque élément est l'image de son image. C'est le cas par exemple du changement de signe dans l'ensemble des nombres réels, ou des symétries du plan ou de l'espace en géométrie euclidienne. En algèbre linéaire, les endomorphismes involutifs sont d'ailleurs appelés symétries. Des involutions apparaissent dans de nombreux domaines des mathématiques, notamment en combinatoire et en topologie.
OctonionEn mathématiques, les octonions ou octaves sont une extension non associative des quaternions. Ils forment une algèbre à huit dimensions sur le corps R des nombres réels. L’algèbre des octonions est généralement notée O. En perdant l’importante propriété d’associativité, les octonions ont reçu moins d’attention que les quaternions. Malgré cela, ils gardent leur importance en algèbre et en géométrie, notamment parmi les groupes de Lie. Les octonions ont été découverts en 1843 par , un ami de William Hamilton, qui les appela octaves.
Algèbre alternativeEn algèbre, une algèbre alternative est une algèbre dans laquelle la multiplication n'est pas nécessairement associative mais satisfait à deux identités exprimant l'alternativité, à savoir pour x et y quelconques dans l'algèbre. Toute algèbre associative est évidemment alternative mais certaines algèbres strictement non associatives telles que les octonions le sont aussi. Les algèbres alternatives sont ainsi nommées car ce sont les algèbres pour lesquelles l'associateur est alterné.