Classe de PontriaguineEn mathématiques, les classes de Pontriaguine sont des classes caractéristiques associées aux fibrés vectoriels réels, nommées d'après Lev Pontriaguine. Les classes de Pontriaguine appartiennent aux groupes de cohomologie de degré un multiple de quatre. Soit E un fibré vectoriel réel au-dessus de M. La k-ième classe de Pontriaguine pk(E) est définie par : pk(E) = pk(E, Z) = (−1)k c2k(E ⊗ C) ∈ H4k(M, Z), où c2k(E ⊗ C) est la 2k-ième classe de Chern du complexifié E ⊗ C = E ⊕ iE de E ; H4k(M, Z) est le 4k-ième groupe de cohomologie de M à coefficients entiers.
Chirurgie (topologie)En mathématiques, et particulièrement en topologie géométrique, la chirurgie est une technique, introduite en 1961 par John Milnor, permettant de construire une variété à partir d'une autre de manière « contrôlée ». On parle de chirurgie parce que cela consiste à « couper » une partie de la première variété et à la remplacer par une partie d'une autre variété, en identifiant les frontières ; ces transformations sont étroitement liées à la notion de décomposition en anses.
Espace de ThomEn topologie, l'espace de Thom est un espace topologique associé à un fibré vectoriel. Il est au cœur de plusieurs constructions homotopiques, parmi lesquelles la construction de Thom-Pontrjagin et le de Thom. Il porte le nom de René Thom, qui a introduit ces constructions en 1954. Soit un fibré vectoriel de rang k sur un espace topologique . Notons l'espace total de ce fibré. Si l'on munit les fibres de d'un produit scalaire, on peut définir les fibrations en boules et en sphères associées : et .
Topological quantum field theoryIn gauge theory and mathematical physics, a topological quantum field theory (or topological field theory or TQFT) is a quantum field theory which computes topological invariants. Although TQFTs were invented by physicists, they are also of mathematical interest, being related to, among other things, knot theory and the theory of four-manifolds in algebraic topology, and to the theory of moduli spaces in algebraic geometry. Donaldson, Jones, Witten, and Kontsevich have all won Fields Medals for mathematical work related to topological field theory.
Topologie géométriqueEn mathématiques, la topologie géométrique est l'étude des variétés et des applications entre elles, en particulier les plongements d'une variété dans une autre. Quelques exemples de sujets en topologie géométrique sont l'orientablité, la décomposition en anses, la platitude locale et le théorème de Jordan-Schoenflies dans le plan et en dimensions supérieures.
René ThomRené Thom, né à Montbéliard le et mort à Bures-sur-Yvette le , est un mathématicien et épistémologue français, fondateur de la théorie des catastrophes. Il reçut la médaille Fields en 1958. Il est le père de l'historienne et soviétologue Françoise Thom. Parmi les continuateurs des travaux de René Thom, on peut mentionner Erik Christopher Zeeman. Fils d'un épicier, René Thom fait ses études au lycée Saint-Louis, puis à l'École normale supérieure (promotion 1943 Sciences).
Théorème de l'indice d'Atiyah-SingerEn mathématiques, et plus précisément en géométrie différentielle, le théorème de l'indice d'Atiyah-Singer, démontré par Michael Atiyah et Isadore Singer en 1963, affirme que pour un opérateur différentiel elliptique sur une variété différentielle compacte, l’indice analytique (lié à la dimension de l'espace des solutions) est égal à l’indice topologique (défini à partir d'invariants topologiques). De nombreux autres théorèmes, comme le théorème de Riemann-Roch, en sont des cas particuliers, et il a des applications en physique théorique.
Tautological bundleIn mathematics, the tautological bundle is a vector bundle occurring over a Grassmannian in a natural tautological way: for a Grassmannian of -dimensional subspaces of , given a point in the Grassmannian corresponding to a -dimensional vector subspace , the fiber over is the subspace itself. In the case of projective space the tautological bundle is known as the tautological line bundle. The tautological bundle is also called the universal bundle since any vector bundle (over a compact space) is a pullback of the tautological bundle; this is to say a Grassmannian is a classifying space for vector bundles.
Complex projective spaceIn mathematics, complex projective space is the projective space with respect to the field of complex numbers. By analogy, whereas the points of a real projective space label the lines through the origin of a real Euclidean space, the points of a complex projective space label the complex lines through the origin of a complex Euclidean space (see below for an intuitive account). Formally, a complex projective space is the space of complex lines through the origin of an (n+1)-dimensional complex vector space.
Classe de ChernEn mathématiques, les classes de Chern sont des classes caractéristiques associées aux fibrés vectoriels. Elles tiennent leur nom du mathématicien sino-américain Shiing-Shen Chern, qui les a introduites en 1946 dans le cas complexe. Les classes de Chern ont des applications importantes en mathématiques, notamment en topologie et géométrie algébriques, et en physique dans l'étude des théories de Yang-Mills et des champs quantiques. Distinguer deux fibrés vectoriels sur une variété lisse est en général un problème difficile.