Nombre réelEn mathématiques, un nombre réel est un nombre qui peut être représenté par une partie entière et une liste finie ou infinie de décimales. Cette définition s'applique donc aux nombres rationnels, dont les décimales se répètent de façon périodique à partir d'un certain rang, mais aussi à d'autres nombres dits irrationnels, tels que la racine carrée de 2, π et e.
Order theoryOrder theory is a branch of mathematics that investigates the intuitive notion of order using binary relations. It provides a formal framework for describing statements such as "this is less than that" or "this precedes that". This article introduces the field and provides basic definitions. A list of order-theoretic terms can be found in the order theory glossary. Orders are everywhere in mathematics and related fields like computer science. The first order often discussed in primary school is the standard order on the natural numbers e.
Analyse (mathématiques)L'analyse (du grec , délier, examiner en détail, résoudre) a pour point de départ la formulation rigoureuse du calcul infinitésimal. C'est la branche des mathématiques qui traite explicitement de la notion de limite, que ce soit la limite d'une suite ou la limite d'une fonction. Elle inclut également des notions comme la continuité, la dérivation et l'intégration. Ces notions sont étudiées dans le contexte des nombres réels ou des nombres complexes.
Théorème des valeurs intermédiairesvignette|Illustration du théorème des valeurs intermédiaires : si f est une fonction continue sur l'intervalle [a ; b], alors elle prend toutes les valeurs comprises entre f(a) et f(b) au moins une fois. Ici la valeur s est prise trois fois. En mathématiques, le théorème des valeurs intermédiaires (abrégé en TVI), parfois appelé théorème de Bolzano, est un résultat important en analyse et concerne des fonctions continues sur un intervalle.
Ensemble ordonné filtrantEn mathématiques, un ensemble ordonné filtrant est un ensemble ordonné (c'est-à-dire dans lequel on peut dire que certains éléments sont plus grands que d'autres) tel que pour toute paire d'éléments, il existe un élément qui est plus grand que chaque élément de la paire. Cela sous-entend en premier lieu que ce troisième élément peut être comparé aux deux premiers, ce qui n'est pas automatique dans un ensemble ordonné (implicitement partiellement ordonné, par opposition à totalement ordonné).
Treillis (ensemble ordonné)En mathématiques, un treillis () est une des structures algébriques utilisées en algèbre générale. C'est un ensemble partiellement ordonné dans lequel chaque paire d'éléments admet une borne supérieure et une borne inférieure. Un treillis peut être vu comme le treillis de Galois d'une relation binaire. Il existe en réalité deux définitions équivalentes du treillis, une concernant la relation d'ordre citée précédemment, l'autre algébrique. Tout ensemble muni d'une relation d'ordre total est un treillis.
Ensemble partiellement ordonnéEn mathématiques, un ensemble partiellement ordonné (parfois appelé poset d'après l'anglais partially ordered set) formalise et généralise la notion intuitive d'ordre ou d'arrangement entre les éléments d'un ensemble. Un ensemble partiellement ordonné est un ensemble muni d'une relation d'ordre qui indique que pour certains couples d'éléments, l'un est plus petit que l'autre. Tous les éléments ne sont pas forcément comparables, contrairement au cas d'un ensemble muni d'un ordre total.
Ordre totalEn mathématiques, on appelle relation d'ordre total sur un ensemble E toute relation d'ordre ≤ pour laquelle deux éléments de E sont toujours comparables, c'est-à-dire que On dit alors que E est totalement ordonné par ≤. Une relation binaire ≤ sur un ensemble E est un ordre total si (pour tous éléments x, y et z de E) : x ≤ x (réflexivité) ; si x ≤ y et y ≤ x, alors x = y (antisymétrie) ; si x ≤ y et y ≤ z, alors x ≤ z (transitivité) ; x ≤ y ou y ≤ x (totalité). Les trois premières propriétés sont celles faisant de ≤ une relation d'ordre.
Plus petit commun multipleEn mathématiques, et plus précisément en arithmétique, le plus petit commun multiple – en abrégé PPCM – (peut s'appeler aussi PPMC, soit « plus petit multiple commun ») de deux entiers non nuls a et b est le plus petit entier strictement positif qui soit multiple de ces deux nombres. On le note a ∨ b ou PPCM(a, b), ou parfois simplement [a, b]. On peut également définir le PPCM de a et b comme un multiple commun de a et de b qui divise tous les autres.
Duality (order theory)In the mathematical area of order theory, every partially ordered set P gives rise to a dual (or opposite) partially ordered set which is often denoted by Pop or Pd. This dual order Pop is defined to be the same set, but with the inverse order, i.e. x ≤ y holds in Pop if and only if y ≤ x holds in P. It is easy to see that this construction, which can be depicted by flipping the Hasse diagram for P upside down, will indeed yield a partially ordered set. In a broader sense, two partially ordered sets are also said to be duals if they are dually isomorphic, i.