PentagoneEn géométrie, un pentagone est un polygone à cinq sommets, donc cinq côtés et cinq diagonales. Un pentagone est soit simple (convexe ou concave), soit croisé. Le pentagone régulier étoilé est le pentagramme. Le terme « pentagone » dérive du latin pentagonum de même sens, substantivation de l'adjectif pentagonus, lui-même emprunté au grec ancien, πεντάγωνος (pentágônos), « pentagonal », « qui a cinq angles, cinq côtés ». Le terme grec est lui-même construit à partir de πέντε (pénte), « cinq », et γωνία (gônía), « angle ».
HeptadécagoneUn heptadécagone est un polygone à 17 sommets, donc 17 côtés et 119 diagonales. La somme des angles internes d'un heptadécagone non croisé vaut , soit . Dans l'heptadécagone régulier convexe, chaque angle interne vaut donc , soit environ 158,82°. Un heptadécagone régulier est un heptadécagone dont les 17 côtés ont la même longueur et dont les angles internes ont même mesure. Il y en a huit : sept étoilés (les heptadécagrammes notés {17/k} pour k de 2 à 8) et un convexe (noté {17}).
Constructible polygonIn mathematics, a constructible polygon is a regular polygon that can be constructed with compass and straightedge. For example, a regular pentagon is constructible with compass and straightedge while a regular heptagon is not. There are infinitely many constructible polygons, but only 31 with an odd number of sides are known. Some regular polygons are easy to construct with compass and straightedge; others are not.
Milieu d'un segmentEn géométrie affine, le milieu d'un segment est l'isobarycentre des deux extrémités du segment. Dans le cadre plus spécifique de la géométrie euclidienne, c'est aussi le point de ce segment situé à égale distance de ses extrémités. Symétrie centrale Deux points distincts A et A sont symétriques par rapport à un point O si et seulement si O est le milieu du segment [AA]. Dans la symétrie centrale de centre O, le symétrique de O est O lui-même. L'ensemble des points du plan équidistants de deux points A et B constitue la médiatrice du segment [AB].
Équation du second degréEn mathématiques, une équation du second degré, ou équation quadratique, est une équation polynomiale de degré 2, c'est-à-dire qu'elle peut s'écrire sous la forme : Dans cette équation, x est l'inconnue les lettres a, b et c représentent les coefficients, avec a différent de 0. a est le coefficient quadratique, b est le coefficient linéaire, et c est un terme constant où le polynome est défini sur .
Construction à la règle et au compasEuclide a fondé sa géométrie sur un système d'axiomes qui assure en particulier qu'il est toujours possible de tracer une droite passant par deux points donnés et qu'il est toujours possible de tracer un cercle de centre donné et passant par un point donné. La géométrie euclidienne est donc la géométrie des droites et des cercles, donc de la règle (non graduée) et du compas. L'intuition d'Euclide était que tout nombre pouvait être construit, ou « obtenu », à l'aide de ces deux instruments.
Polygone régulierEn géométrie euclidienne, un polygone régulier est un polygone à la fois équilatéral (tous ses côtés ont la même longueur) et équiangle (tous ses angles ont la même mesure). Un polygone régulier est soit convexe, soit étoilé. Tous les polygones réguliers convexes d'un même nombre de côtés sont semblables. Tout polygone régulier étoilé de n côtés a une enveloppe convexe de n côtés, qui est un polygone régulier. Un entier n supérieur ou égal à 3 étant donné, il existe un polygone régulier convexe de n côtés.