Filter (set theory)In mathematics, a filter on a set is a family of subsets such that: and if and , then If , and , then A filter on a set may be thought of as representing a "collection of large subsets", one intuitive example being the neighborhood filter. Filters appear in order theory, model theory, and set theory, but can also be found in topology, from which they originate. The dual notion of a filter is an ideal.
Ultrafilter on a setIn the mathematical field of set theory, an ultrafilter on a set is a maximal filter on the set In other words, it is a collection of subsets of that satisfies the definition of a filter on and that is maximal with respect to inclusion, in the sense that there does not exist a strictly larger collection of subsets of that is also a filter. (In the above, by definition a filter on a set does not contain the empty set.) Equivalently, an ultrafilter on the set can also be characterized as a filter on with the property that for every subset of either or its complement belongs to the ultrafilter.
Théorème de TykhonovLe théorème de Tychonov (ou Tychonoff) est un théorème de topologie qui affirme qu'un produit d'espaces topologiques compacts est compact au sens de la topologie produit. Il a été publié en 1930 par le mathématicien russe Andreï Nikolaïevitch Tikhonov. Il a plusieurs applications en topologie algébrique et différentielle, particulièrement en analyse fonctionnelle, pour la preuve du théorème de Banach-Alaoglu-Bourbaki et le compactifié de Stone-Čech.
General topologyIn mathematics, general topology (or point set topology) is the branch of topology that deals with the basic set-theoretic definitions and constructions used in topology. It is the foundation of most other branches of topology, including differential topology, geometric topology, and algebraic topology. The fundamental concepts in point-set topology are continuity, compactness, and connectedness: Continuous functions, intuitively, take nearby points to nearby points.
Suite généraliséeEn mathématiques, la notion de suite généralisée, ou suite de Moore-Smith, ou filet, étend celle de suite, en indexant les éléments d'une famille par des éléments d'un ensemble ordonné filtrant qui n'est plus nécessairement celui des entiers naturels. Pour tout ensemble X, une suite généralisée d'éléments de X est une famille d'éléments de X indexée par un ensemble ordonné filtrant A. Par filtrant (à droite), on entend que toute paire dans A possède un majorant dans A. Soit un filet dans un ensemble E et, pour tout , .
Espace T1En mathématiques, un espace accessible (ou espace T, ou de Fréchet) est un cas particulier d'espace topologique. Il s'agit d'un exemple d'axiome de séparation. Un espace topologique E est T si pour tout couple (x, y) d'éléments de E distincts, il existe un ouvert contenant x et pas y. Soit E un espace topologique.
Comparaison de topologiesEn mathématiques, l'ensemble de toutes les topologies possibles sur un ensemble donné possède une structure d'ensemble partiellement ordonné. Cette relation d'ordre permet de comparer les différentes topologies. Soient τ1 et τ2 deux topologies sur un ensemble X. On dit que τ2 est plus fine que τ1 (ou bien que τ1 est moins fine que τ2) et on note τ ⊆ τ si l'application identité idX : (X, τ2) → (X, τ1) est continue. Si de plus τ ≠ τ, on dit que τ2 est strictement plus fine que τ1 (ou bien que τ1 est strictement moins fine que τ2).
Filters in topologyFilters in topology, a subfield of mathematics, can be used to study topological spaces and define all basic topological notions such as convergence, continuity, compactness, and more. Filters, which are special families of subsets of some given set, also provide a common framework for defining various types of limits of functions such as limits from the left/right, to infinity, to a point or a set, and many others. Special types of filters called have many useful technical properties and they may often be used in place of arbitrary filters.
Topologie initialeEn mathématiques, plus précisément en topologie, la topologie initiale, sur un ensemble muni d'une famille d'applications à valeurs dans des espaces topologiques, est la topologie la moins fine pour laquelle toutes ces applications sont continues. Deux cas particuliers importants de topologies initiales sont la topologie induite et la topologie produit. La notion duale est celle de topologie finale. Soient X un ensemble et (fi)i∈I une famille d'applications, chacune définie sur X et à valeurs dans un espace topologique Yi.
Base (topologie)En mathématiques, une base d'une topologie est un ensemble d'ouverts tel que tout ouvert de la topologie soit une réunion d'éléments de cet ensemble. Ce concept est utile parce que de nombreuses propriétés d'une topologie se ramènent à des énoncés sur une de ses bases et beaucoup de topologies sont faciles à définir par la donnée d'une base. Soit (X, T) un espace topologique. Un réseau de T est un ensemble N de parties de X tel que tout ouvert U de T est une réunion d'éléments de N, autrement dit : pour tout point x de U, il existe dans N une partie incluse dans U et contenant x.