LogiqueLa logique — du grec , qui est un terme dérivé de signifiant à la fois « raison », « langage » et « raisonnement » — est, dans une première approche, l'étude de l'inférence, c'est-à-dire des règles formelles que doit respecter toute argumentation correcte. Le terme aurait été utilisé pour la première fois par Xénocrate. La logique antique se décompose d'abord en dialectique et rhétorique. Elle est depuis l'Antiquité l'une des grandes disciplines de la philosophie, avec l'éthique (philosophie morale) et la physique (science de la nature).
Logique probabilisteProbabilistic logic (also probability logic and probabilistic reasoning) involves the use of probability and logic to deal with uncertain situations. Probabilistic logic extends traditional logic truth tables with probabilistic expressions. A difficulty of probabilistic logics is their tendency to multiply the computational complexities of their probabilistic and logical components. Other difficulties include the possibility of counter-intuitive results, such as in case of belief fusion in Dempster–Shafer theory.
Booléenvignette|George Boole (1864-1865) L'homme ayant mis en place la première structure algébrique utilisée en logique mathématique, en informatique et en électronique. En programmation informatique, un booléen est un type de variable à deux états (généralement notés vrai et faux), destiné à représenter les valeurs de vérité de la logique et l'algèbre booléenne. Il est nommé ainsi d'après George Boole, fondateur dans le milieu du de l'algèbre portant son nom. Le type de données booléen est principalement associé à des états conditionnels.
Conjonction logiqueEn logique, la conjonction est une opération mise en œuvre par le connecteur binaire et. Le connecteur et est donc un opérateur binaire qui lie deux propositions pour en faire une autre. Si on admet chacune des deux propositions, alors on admettra la proposition qui en est la conjonction. En logique mathématique, le connecteur de conjonction est noté soit &, soit ∧. En théorie de la démonstration, plus particulièrement en calcul des séquents, la conjonction est régie par des règles d'introduction et des règles d'élimination.
Valeur de véritéUne valeur de vérité est une valeur attribuée à chaque proposition logique. Pour donner une valeur de vérité à une proposition, on attribue des valeurs de vérité aux variables qu'elle contient. La valeur d'une proposition formés de deux propositions P et Q et d'un connecteur est calculée à partir des valeurs de vérité attribuées à P et à Q. Ainsi la valeur de vérité attribuée à « P et Q » sera « p.q » où « . » est la multiplication. En conséquence, P et Q est vrai si et seulement si P et Q sont chacun vrais.
Logique polyvalenteLes logiques polyvalentes (ou multivalentes, ou multivaluées) sont des alternatives à la logique classique aristotélicienne, bivalente, dans laquelle toute proposition doit être soit vraie soit fausse. Elles sont apparues à partir des années 1920, surtout à la suite des travaux du logicien polonais Jan Łukasiewicz. Elles sont principalement étudiées au niveau du seul calcul propositionnel et peu au niveau du calcul des prédicats.
Table de véritéUne table de vérité (parfois appelée fonction de vérité) est une table mathématique utilisée en logique classique — en particulier le calcul propositionnel classique et l'algèbre de Boole — pour représenter de manière sémantique des expressions logiques et calculer la valeur de leur fonction relativement à chacun de leurs arguments fonctionnels (chaque combinaison de valeur assumée par leurs variables logiques).
Logique floueLa logique floue (fuzzy logic, en anglais) est une logique polyvalente où les valeurs de vérité des variables — au lieu d'être vrai ou faux — sont des réels entre 0 et 1. En ce sens, elle étend la logique booléenne classique avec des . Elle consiste à tenir compte de divers facteurs numériques pour qu'on souhaite acceptable.
Disjonction logiqueLa disjonction logique, ou disjonction non exclusive, de deux assertions est une façon d'affirmer qu'au moins une de ces deux assertions est vraie (la première, la deuxième, ou les deux). Dans le langage logique ou mathématique, et dans les domaines techniques qui l'emploient, elle se traduit par le OU logique, un opérateur logique dans le calcul des propositions. La proposition obtenue en reliant deux propositions par cet opérateur s'appelle également leur disjonction ou leur somme logique.
Structure algébriqueEn mathématiques, une structure algébrique est définie axiomatiquement par une ou plusieurs opérations sur un ensemble (dites internes), éventuellement muni d’autres opérations (externes) dépendant d’autres ensembles, toutes ces opérations satisfaisant certaines relations telles que l’associativité, la commutativité ou la distributivité. La structure de groupe qui émerge progressivement au , avec une seule opération interne et quelques propriétés se formalise au début du avec une kyrielle de structures d’algèbre générale moins restrictives (monoïde) ou au contraire enrichies par une seconde opération (anneau, corps, algèbre de Boole.