Représentation de SchrödingerEn mécanique quantique, la représentation de Schrödinger est une des trois formulations et modes de traitement des problèmes dépendant du temps dans le cadre de la mécanique quantique classique. Dans cette représentation, l'état d'un système évolue avec le temps. Le principe de superposition quantique stipule qu'une fonction d'état est en général une combinaison linéaire d'états propres.
Transition électroniqueLes transitions électroniques décrivent le passage d'un électron d'un niveau d'énergie à un autre. L'électron du niveau d'énergie , excité par un rayonnement électromagnétique passe au niveau d'énergie supérieur . Dans le cas le plus simple d'un atome d'hydrogène (un électron et un proton), l'électron est piégé dans le champ électrique créé par le proton. La mécanique quantique, à l'inverse de la mécanique classique, prévoit que l'électron ne peut alors exister que dans certains états quantiques d'énergie bien déterminés, on parle de quantification d'énergie.
Fonction d'ondethumb|300px|right|Illustration de la notion de fonction d'onde dans le cas d'un oscillateur harmonique. Le comportement en mécanique classique est représenté sur les images A et B et celui en mécanique quantique sur les figures C à H. Les parties réelles et imaginaires des fonctions d'onde sont représentées respectivement en bleu et en rouge. Les images C à F correspondent à des états stationnaires de l'énergie, tandis que les figures G et H correspondent à des états non stationnaires.
Réduction du paquet d'ondeLa réduction du paquet d'onde est un concept de la mécanique quantique selon lequel, après une mesure, un système physique voit son état entièrement réduit à celui qui a été mesuré. Pendant longtemps, le processus par lequel cette réduction a lieu a été inconnu des physiciens, ce qui les a contraint à en faire un postulat afin de rester conforme aux résultats expérimentaux. Le concept de réduction du paquet d'onde implique de nombreuses difficultés sur le plan logique et épistémologique.
Modèle de BohrLe modèle de Bohr est une théorie obsolète dans le domaine de la physique/chimie, cherchant à comprendre la constitution d'un atome, et plus particulièrement celui de l'hydrogène et des ions hydrogénoïdes (ions ne possédant qu'un seul électron). Élaborée par Niels Bohr en 1913, cette théorie établie sur le modèle planétaire de Rutherford rencontra un succès immédiat car elle expliquait de manière simple les raies spectrales des éléments hydrogénés tout en effectuant un rapprochement entre les premiers modèles de l'atome et la théorie des quanta.
Théorie des quantaLa théorie des quanta est le nom donné à une théorie physique qui tente de modéliser le comportement de l'énergie à très petite échelle à l'aide des quanta (pluriel du terme latin quantum), quantités discontinues. Connue en anglais sous le nom d' «ancienne théorie quantique» (old quantum theory), son introduction a bousculé plusieurs idées reçues en physique de l'époque, au début du . Elle a servi de pont entre la physique classique et la physique quantique, dont la pierre angulaire, la mécanique quantique, est née en 1925.
Représentation de HeisenbergEn mécanique quantique, la représentation de Heisenberg est une des trois formulations et modes de traitement des problèmes dépendant du temps dans le cadre de la mécanique quantique classique. Dans cette représentation, les opérateurs du système évoluent avec le temps alors que le vecteur d'état quantique ne dépend pas du temps. Remarque : La représentation de Heisenberg ne doit pas être confondue avec la « mécanique des matrices », quelquefois appelée « mécanique quantique de Heisenberg ».
Opérateur (physique)Un opérateur est, en mécanique quantique, une application linéaire d'un espace de Hilbert dans lui-même. Le terme est une spécialisation du concept mathématique d'opérateur. Une observable est un opérateur hermitien. En mécanique classique, le mouvement des particules (ou d'un système de particules) est complètement déterminé par le Lagrangien ou, de façon équivalente, l'Hamiltonien , une fonction des coordonnées généralisées q, vitesse généralisée et son moment conjugué : Si ou est indépendant des coordonnées généralisées , donc que et ne changent pas en fonction de , le moment conjugué de ces coordonnées sera conservé (c'est une partie du théorème de Noether, et l'invariance du mouvement en respect de la coordonnée est une symétrie).
Opérateur de positionEn physique quantique, l'opérateur de position ou opérateur de localisation est l'opérateur qui formalise l'observable position de l'état quantique d'une particule. Dans une dimension, le carré du module de la fonction d'onde représente la densité de probabilité de trouver la particule à la position . La valeur moyenne ou l'espérance mathématique d'une mesure de la position de la particule est alors En conséquence, l'opérateur qui correspond à la position est , où L'accent circonflexe au-dessus du x à gauche indique un opérateur, de sorte que cette équation peut être lue comme Le résultat de l'action de l'opérateur x sur une fonction quelconque ψ(x) égale x multiplié par ψ(x).
Représentation d'interactionLa représentation d'interaction ou représentation de Dirac de la mécanique quantique est une manière de traiter les problèmes dépendant du temps. Dans la représentation d'interaction, on applique les hypothèses suivantes : On considère un hamiltonien ayant la forme suivante : où est constant dans le temps et décrit une interaction perturbative qui peut dépendre du temps. Les états propres sont dépendants du temps Les opérateurs sont aussi dépendants du temps La dynamique des états est décrite suivant la représentation de Schrödinger tandis que la dynamique des opérateurs est décrite suivant la représentation de Heisenberg.