ThéorèmeEn mathématiques et en logique, un théorème (du grec théorêma, objet digne d'étude) est une assertion qui est démontrée, c'est-à-dire établie comme vraie à partir d'autres assertions déjà démontrées (théorèmes ou autres formes d'assertions) ou des assertions acceptées comme vraies, appelées axiomes. Un théorème se démontre dans un système déductif et est une conséquence logique d'un système d'axiomes. En ce sens, il se distingue d'une loi scientifique, obtenue par l'expérimentation.
Système formelUn système formel est une modélisation mathématique d'un langage en général spécialisé. Les éléments linguistiques, mots, phrases, discours, etc., sont représentés par des objets finis (entiers, suites, arbres ou graphes finis...). Le propre d'un système formel est que la correction au sens grammatical de ses éléments est vérifiable algorithmiquement, c'est-à-dire que ceux-ci forment un ensemble récursif.
Calcul des propositionsLe calcul des propositions ou calcul propositionnel, (ou encore logique des propositions) fait partie de la logique mathématique. Il a pour objet l'étude des relations logiques entre « propositions » et définit les lois formelles selon lesquelles les propositions complexes sont formées en assemblant des propositions simples au moyen des connecteurs logiques et celles-ci sont enchaînées pour produire des raisonnements valides. Il est un des systèmes formels, piliers de la logique mathématique dont il aide à la formulation des concepts.
Véritéthumb|Walter Seymour Allward, Veritas, 1920 thumb|Nec mergitur ou La Vérité sortant du puits, toile de Édouard Debat-Ponsan, 1898. La vérité (du latin veritas, « vérité », dérivé de verus, « vrai ») est la correspondance entre une proposition et la réalité à laquelle cette proposition réfère. Cependant cette définition correspondantiste de la vérité n'est pas la seule, il existe de nombreuses définitions du mot et des controverses classiques autour des diverses théories de la vérité.
Règle d'inférenceDans un système logique, les régles d'inférence sont les règles qui fondent le processus de déduction, de dérivation ou de démonstration. L'application des règles sur les axiomes du système permet d'en démontrer les théorèmes. Une règle d'inférence est une fonction qui prend un -uplet de formules et rend une formule. Les formules arguments sont appelées « les prémisses » et la formule retournée est appelée la « conclusion ».