Matrice élémentaireUne matrice est dite élémentaire lorsqu'elle est obtenue en appliquant une seule opération élémentaire sur les lignes de la matrice identité. Les opérations élémentaires sur les lignes d'une matrice sont les suivantes : permuter deux lignes entre elles ; ajouter un multiple d'une ligne à une autre ligne ; multiplier une ligne par un scalaire non nul. Un examen direct des trois types montre que toute matrice élémentaire est inversible et de transposée élémentaire.
Matrice de ToeplitzEn algèbre linéaire, une matrice de Toeplitz (d'après Otto Toeplitz) ou matrice à diagonales constantes est une matrice dont les coefficients sur une diagonale descendant de gauche à droite sont les mêmes. Par exemple, la matrice suivante est une matrice de Toeplitz : Toute matrice A à n lignes et n colonnes de la forme est une matrice de Toeplitz. Si l'élément situé à l’intersection des ligne i et colonne j de A est noté Ai,j, alors on a : En général, une équation matricielle correspond à un système de n équations linéaires à résoudre.
Complément de SchurEn algèbre linéaire et plus précisément en théorie des matrices, le complément de Schur est défini comme suit. Soit une matrice de dimension (p+q)×(p+q), où les blocs A, B, C, D sont des matrices de dimensions respectives p×p, p×q, q×p et q×q, avec D inversible. Alors, le complément de Schur du bloc D de la matrice M est constitué par la matrice de dimension p×p suivante : Lorsque B est la transposée de C, la matrice M est symétrique définie positive si et seulement si D et son complément de Schur dans M le sont.
Frobenius inner productIn mathematics, the Frobenius inner product is a binary operation that takes two matrices and returns a scalar. It is often denoted . The operation is a component-wise inner product of two matrices as though they are vectors, and satisfies the axioms for an inner product. The two matrices must have the same dimension - same number of rows and columns, but are not restricted to be square matrices. Given two complex number-valued n×m matrices A and B, written explicitly as the Frobenius inner product is defined as, where the overline denotes the complex conjugate, and denotes Hermitian conjugate.
Décomposition de SchurEn algèbre linéaire, une décomposition de Schur (nommée après le mathématicien Issai Schur) d'une matrice carrée complexe M est une décomposition de la formeoù U est une matrice unitaire (U*U = I) et A une matrice triangulaire supérieure. On peut écrire la décomposition de Schur en termes d'applications linéaires : Dans le cas où est l'application nulle, l'énoncé est directement vérifié, on peut donc se contenter de traiter le cas où est différente de l'application nulle.
Matrices congruentesEn algèbre linéaire, deux matrices carrées A et B (de même taille et à coefficients dans un même corps K) sont dites congruentes si elles représentent la même forme bilinéaire dans deux bases différentes, c'est-à-dire s'il existe une matrice inversible P telle que où P est la transposée de P. La congruence définit une relation d'équivalence sur les matrices carrées de même taille à coefficients dans K. Deux matrices congruentes ont même rang.
Matrice à coefficients positifsUne matrice de type est à coefficients positifs lorsque tous ses éléments sont réels positifs ; on écrira alors . Elle est dite strictement positive lorsque tous ses éléments sont strictement positifs ; on écrira alors . et étant deux matrices réelles on définit une relation d'ordre partiel sur ces matrices en posant . Il est immédiat que cette relation d'ordre est compatible avec l'addition. De même elle est compatible avec la multiplication (à gauche ou à droite) par une matrice positive.
Gram matrixIn linear algebra, the Gram matrix (or Gramian matrix, Gramian) of a set of vectors in an inner product space is the Hermitian matrix of inner products, whose entries are given by the inner product . If the vectors are the columns of matrix then the Gram matrix is in the general case that the vector coordinates are complex numbers, which simplifies to for the case that the vector coordinates are real numbers. An important application is to compute linear independence: a set of vectors are linearly independent if and only if the Gram determinant (the determinant of the Gram matrix) is non-zero.