Explore les propriétés stochastiques et la modélisation des séries chronologiques, couvrant l'autocovariance, la stationnarité, la densité spectrale, l'estimation, la prévision, les modèles ARCH et la modélisation multivariée.
Couvre Vector Autoregression (VAR) dans l'analyse des séries chronologiques, y compris les propriétés d'échantillonnage et des exemples de processus VAR.
Couvre les propriétés stochastiques des séries temporelles, de la stationnarité, de l'autocovariance, des processus stochastiques spéciaux, de la densité spectrale, des filtres numériques, des techniques d'estimation, du contrôle des modèles, de la prévision et des modèles avancés.
Explore les modèles de séries chronologiques, en mettant l'accent sur les processus autorégressifs, y compris le bruit blanc, AR(1) et MA(1), entre autres.
Explore Vector Autoregression pour la modélisation de séries temporelles à valeur vectorielle, couvrant la stabilité, les polynômes caractéristiques inverses, les équations Yule-Walker et les autocorrelations.
Explore l'autocorrélation, la périodicité et les corrélations fallacieuses dans les données de séries chronologiques, en soulignant l'importance de comprendre les processus sous-jacents et de mettre en garde contre les erreurs d'interprétation.