Relation binaireEn mathématiques, une relation binaire entre deux ensembles E et F (ou simplement relation entre E et F) est définie par un sous-ensemble du produit cartésien E × F, soit une collection de couples dont la première composante est dans E et la seconde dans F. Cette collection est désignée par le graphe de la relation. Les composantes d'un couple appartenant au graphe d'une relation R sont dits en relation par R. Une relation binaire est parfois appelée correspondance entre les deux ensembles.
Structure d'incidencevignette| Exemples de structures d'incidence: Exemple 1: Points et droites du plan euclidien Exemple 2: Points et cercles Exemple 3: Structure définie par une matrice d'incidence. En mathématiques, une structure d'incidence est toute composition de deux types d'objets dans le plan euclidien : des points ou l'équivalent de points et des droites ou l'équivalent de droites et d'une seule relation possible entre ces types, les autres propriétés étant ignorées et la structure pouvant ainsi se représenter par une matrice.
Relation inverseIn mathematics, the converse relation, or transpose, of a binary relation is the relation that occurs when the order of the elements is switched in the relation. For example, the converse of the relation 'child of' is the relation 'parent of'. In formal terms, if and are sets and is a relation from to then is the relation defined so that if and only if In set-builder notation, The notation is analogous with that for an inverse function. Although many functions do not have an inverse, every relation does have a unique converse.
Incidence geometryIn mathematics, incidence geometry is the study of incidence structures. A geometric structure such as the Euclidean plane is a complicated object that involves concepts such as length, angles, continuity, betweenness, and incidence. An incidence structure is what is obtained when all other concepts are removed and all that remains is the data about which points lie on which lines. Even with this severe limitation, theorems can be proved and interesting facts emerge concerning this structure.
Complémentaire (théorie des ensembles)En mathématiques, et plus particulièrement en théorie des ensembles, le complémentaire d'une partie d'un ensemble est constitué de tous les éléments de n'appartenant pas à . Le complémentaire de est . En cas de risque de confusion, si l'on veut préciser que l'on parle du complémentaire de dans , on note . Si est différent de l'ensemble vide et de , alors et forment une partition de l'ensemble . Lorsque est un ensemble fini, la somme des cardinaux de et est égale au cardinal de : D'où on déduit : Exemple Pour dénombrer les absents dans une assemblée prévue de cinquante personnes, il suffit de compter les présents.
Outer productIn linear algebra, the outer product of two coordinate vectors is the matrix whose entries are all products of an element in the first vector with an element in the second vector. If the two coordinate vectors have dimensions n and m, then their outer product is an n × m matrix. More generally, given two tensors (multidimensional arrays of numbers), their outer product is a tensor. The outer product of tensors is also referred to as their tensor product, and can be used to define the tensor algebra.
Matrice de permutationUne matrice de permutation est une matrice carrée qui vérifie les propriétés suivantes : les coefficients sont 0 ou 1 ; il y a un et un seul 1 par ligne ; il y a un et un seul 1 par colonne. Ainsi : est une matrice de permutation. Les matrices de permutations carrées de taille n sont en bijection avec les permutations de l'ensemble {1,2,...n}. Si σ est une telle permutation, la matrice correspondante est de terme général Cette bijection est un morphisme de groupes : En utilisant cette identité avec deux permutations inverses l'une de l'autre, on obtient le fait qu'une matrice de permutation est inversible, et que son inverse est la matrice de la permutation inverse.
Relation réflexiveEn mathématiques, une relation binaire peut avoir, entre autres propriétés, la réflexivité ou bien l'antiréflexivité (ou irréflexivité). Une relation R sur un ensemble X est dite : réflexive si tout élément de X est R-relié à lui-même :ou encore, si le graphe de R contient la diagonale de X (qui est le graphe de l'égalité) ; antiréflexive (ou irréflexive) si aucun élément de X n'est R-relié à lui-même :ou encore, si son graphe est disjoint de la diagonale de X.