Hypothèse de RiemannEn mathématiques, l'hypothèse de Riemann est une conjecture formulée en 1859 par le mathématicien allemand Bernhard Riemann, selon laquelle les zéros non triviaux de la fonction zêta de Riemann ont tous une partie réelle égale à 1/2. Sa démonstration améliorerait la connaissance de la répartition des nombres premiers et ouvrirait des nouveaux domaines aux mathématiques. Cette conjecture constitue l'un des problèmes non résolus les plus importants des mathématiques du début du : elle est l'un des vingt-trois fameux problèmes de Hilbert proposés en 1900, l'un des sept problèmes du prix du millénaire et l'un des dix-huit problèmes de Smale.
Nombre premier primorielEn arithmétique, un nombre premier primoriel est un nombre premier de la forme n# + 1 (nombre d'Euclide) ou n# – 1, où n# désigne la primorielle d'un entier naturel n (produit de tous les nombres premiers inférieurs ou égaux à n). Pour la même valeur de n, l'existence d'un nombre premier primoriel de l'une des deux formes n'implique pas l'existence d'un nombre premier primoriel de l'autre forme, et les nombres d'Euclide ne sont pas tous premiers. Le produit vide étant égal à 1, le nombre d'Euclide 0# + 1 = 1# + 1 vaut 2.
Entier sans facteur carrévignette|Les nombres qui n'ont pas été rayé sont tous les entiers sans facteur carré jusqu'à 120 En mathématiques et plus précisément en arithmétique, un entier sans facteur carré (souvent appelé, par tradition ou commodité quadratfrei ou squarefree) est un entier relatif qui n'est divisible par aucun carré parfait, excepté 1. Par exemple, 10 est sans facteur carré mais 18 ne l'est pas, puisqu'il est divisible par 9 = 3. Les dix plus petits nombres de la des entiers positifs sans facteur carré sont 1, 2, 3, 5, 6, 7, 10, 11, 13, 14.
6 (nombre)6 (six) est l'entier naturel qui suit 5 et qui précède 7. La plupart des alphabets possèdent un chiffre pour signifier le nombre six, notamment dans le cadre du système de numération indo-arabe. Six (chiffre) Le chiffre « six », symbolisé « 6 », est le chiffre arabe servant notamment à signifier le nombre six dans le monde occidental. Le chiffre « 6 » n'est pas le seul utilisé dans le monde. Un certain nombre d'alphabets — particulièrement ceux des langues du sous-continent indien et du sud-est asiatique — utilisent des chiffres différents, au sein même de la numération indo-arabe.
24 (nombre)Le nombre 24 (vingt-quatre) est l’entier naturel qui suit 23 et qui précède 25. Le nombre 24 est la factorielle de 4 et un nombre composé ; ses diviseurs propres sont 1, 2, 3, 4, 6, 8 et 12, ce qui justifie que 24 est un nombre hautement composé. Les nombres obtenus, en soustrayant 1 de chacun de ses diviseurs (à l’exception de 1 et 2, mais en incluant lui-même), sont tous premiers ; 24 est le plus grand nombre possédant cette propriété. Il y a dix solutions à l’équation où est la fonction indicatrice d'Euler (ou fonction totient).
Indicatrice d'Eulervignette|upright=1.5|Les mille premières valeurs de φ(n). En mathématiques, l'indicatrice d'Euler est une fonction arithmétique de la théorie des nombres, qui à tout entier naturel n non nul associe le nombre d'entiers compris entre 1 et n (inclus) et premiers avec n. Elle intervient en mathématiques pures, à la fois en théorie des groupes, en théorie algébrique des nombres et en théorie analytique des nombres. En mathématiques appliquées, à travers l'arithmétique modulaire, elle joue un rôle important en théorie de l'information et plus particulièrement en cryptologie.
23 (nombre)Le nombre 23 (vingt-trois) est l'entier naturel qui suit 22 et qui précède 24. Le nombre 23 est : le neuvième nombre premier (cousin avec 19 et sexy avec 17 et avec 29) ; un nombre premier factoriel ; le septième nombre premier non brésilien ; un nombre premier de Sophie Germain ; un nombre premier sûr ; un nombre premier supersingulier un nombre de Woodall ; un nombre de Smarandache-Wellin ; un nombre premier long ; un nombre premier de Pillai ; le plus petit entier n > 0 tel que Z[e] ne soit pas principal ; le seul entier naturel avec 239 à ne pas être somme de 8 cubes (voir problème de Waring); le nombre de personnes que l'on doit réunir pour avoir au moins une chance sur deux que deux personnes de ce groupe aient leur anniversaire le même jour (voir le Paradoxe des anniversaires) ; un nombre de Wedderburn-Etherington ; la somme des produits des quatre premiers entiers par leur factorielle .
Fonction somme des puissances k-ièmes des diviseursEn mathématiques, la fonction "somme des puissances k-ièmes des diviseurs", notée , est la fonction multiplicative qui à tout entier n > 0 associe la somme des puissances -ièmes des diviseurs positifs de n, où est un nombre complexe quelconque : La fonction est multiplicative, c'est-à-dire que, pour tous entiers et n premiers entre eux, . En effet, est le produit de convolution de deux fonctions multiplicatives : la fonction puissance -ième et la fonction constante 1.
Fonction de compte des nombres premiersEn mathématiques, la fonction de compte des nombres premiers est la fonction comptant le nombre de nombres premiers inférieurs ou égaux à un nombre réel x. Elle est notée π(x) (à ne pas confondre avec la constante π). L’image ci-contre illustre la fonction π(n) pour les valeurs entières de la variable. Elle met en évidence les augmentations de 1 que la fonction subit à chaque fois que x est égal à un nombre premier. Soit l'ensemble des nombres premiers et un nombre réel.
Nombre premiervignette|Nombres naturels de zéro à cent. Les nombres premiers sont marqués en rouge. vignette|Le nombre 7 est premier car il admet exactement deux diviseurs positifs distincts. Un nombre premier est un entier naturel qui admet exactement deux diviseurs distincts entiers et positifs. Ces deux diviseurs sont 1 et le nombre considéré, puisque tout nombre a pour diviseurs 1 et lui-même (comme le montre l’égalité n = 1 × n), les nombres premiers étant ceux qui ne possèdent pas d'autre diviseur.