Théorème des fonctions implicitesEn mathématiques, le théorème des fonctions implicites est un résultat de géométrie différentielle. Certaines courbes planes sont définies par une équation cartésienne, c'est-à-dire une équation de la forme f(x, y) = 0, où x et y décrivent les nombres réels. Le théorème indique que si la fonction f est suffisamment régulière au voisinage d'un point de la courbe, il existe une fonction φ de R dans R au moins aussi régulière que f telle que localement, la courbe et le graphe de la fonction φ sont confondus.
Moving frameIn mathematics, a moving frame is a flexible generalization of the notion of an ordered basis of a vector space often used to study the extrinsic differential geometry of smooth manifolds embedded in a homogeneous space. In lay terms, a frame of reference is a system of measuring rods used by an observer to measure the surrounding space by providing coordinates. A moving frame is then a frame of reference which moves with the observer along a trajectory (a curve).
Parametric equationIn mathematics, a parametric equation defines a group of quantities as functions of one or more independent variables called parameters. Parametric equations are commonly used to express the coordinates of the points that make up a geometric object such as a curve or surface, called parametric curve and parametric surface, respectively. In such cases, the equations are collectively called a parametric representation, or parametric system, or parameterization (alternatively spelled as parametrisation) of the object.
Deux dimensionsDeux dimensions, bidimensionnel ou 2D sont des expressions qui caractérisent un espace conçu à partir de deux dimensions. Ce type de plan peut représenter des corps en une ou deux dimensions. Un espace en deux dimensions est un plan. Un objet en deux dimensions a donc une superficie mais pas de volume. En mathématiques, le plan composé de deux dimensions est à distinguer de l’espace, qui est lui repéré par trois axes orthogonaux.
Courbure principaleEn géométrie différentielle des surfaces, les deux courbures principales d'une surface sont les courbures de cette surface selon deux directions perpendiculaires appelées directions principales. On montre que ce sont les courbures minimale et maximale rencontrées en faisant tourner le plan de coupe. Les courbures principales sont les valeurs propres de l'endomorphisme de Weingarten. Elles caractérisent la géométrie locale des surfaces à l'ordre 2.
Multivariable calculusMultivariable calculus (also known as multivariate calculus) is the extension of calculus in one variable to calculus with functions of several variables: the differentiation and integration of functions involving multiple variables (multivariate), rather than just one. Multivariable calculus may be thought of as an elementary part of advanced calculus. For advanced calculus, see calculus on Euclidean space. The special case of calculus in three dimensional space is often called vector calculus.
Courburevignette|Le déplacement d'une Dictyostelium discoideum dont la couleur du contour est fonction de la courbure. Échelle : 5 μm ; durée : 22 secondes. Intuitivement, courbe s'oppose à droit : la courbure d'un objet géométrique est une mesure quantitative du caractère « plus ou moins courbé » de cet objet. Par exemple : dans le plan euclidien, une ligne droite est un objet à une dimension de courbure nulle et un cercle un objet de courbure constante positive, valant 1/R (inverse du rayon) ; dans l'espace euclidien usuel à trois dimensions, un plan est un objet à deux dimensions de courbure nulle, et une sphère est un objet à deux dimensions de courbure constante positive.
Géométrie analytiqueLa géométrie analytique est une approche de la géométrie dans laquelle les objets sont décrits par des équations ou des inéquations à l'aide d'un système de coordonnées. Elle est fondamentale pour la physique et l'infographie. En géométrie analytique, le choix d'un repère est indispensable. Tous les objets seront décrits relativement à ce repère. Repérage dans le plan et dans l'espace Le terme de géométrie analytique, par opposition à la géométrie synthétique, se réfère aux méthodes d'analyse et synthèse pratiquées par les géomètres grecs.
Rayon (géométrie)En géométrie, un rayon d'un cercle ou d'une sphère est un segment de droite quelconque reliant son centre à sa circonférence. Par extension, le rayon d'un cercle ou d'une sphère est la longueur de chacun de ces segments. Le rayon est la moitié du diamètre. En sciences et en ingénierie, le terme rayon de courbure est souvent utilisé comme synonyme de rayon. Plus généralement le rayon d'un objet (par exemple un cylindre, un polygone, un graphe ou une pièce mécanique) est la distance de son centre ou axe de symétrie à ses points de surface les plus éloignés.
Solide de révolutionEn géométrie, un solide de révolution est engendré par une surface plane fermée tournant autour d'un axe situé dans le même plan qu'elle et ne possédant en commun avec elle aucun point ou seulement des points de sa frontière. Parmi les solides de révolution, on peut citer : la boule ; le cylindre circulaire droit ; le cône circulaire droit ; le tore ; l'ellipsoïde (de révolution). Tout plan contenant l'axe de rotation découpe sur la surface de révolution un méridien.