Théorème fondamental de la théorie de GaloisEn mathématiques et plus précisément en algèbre commutative, le théorème fondamental de la théorie de Galois établit une correspondance entre les extensions intermédiaires d'une extension finie de corps et leurs groupes de Galois, dès lors que l'extension est galoisienne, c’est-à-dire séparable et normale. Soient L une extension galoisienne finie de K et G son groupe de Galois. Pour tout sous-groupe H de G, on note LH le sous-corps de L constitué des éléments fixés par chaque élément de H.
Corps de nombresEn mathématiques, un corps de nombres algébriques (ou simplement corps de nombres) est une extension finie K du corps Q des nombres rationnels. En particulier, c'est une extension algébrique : tous les éléments de K sont des nombres algébriques, dont le degré divise le degré de l'extension. C'est aussi une extension séparable car Q est de caractéristique nulle donc parfait. Tout sous-corps de C engendré par un nombre fini de nombres algébriques est un corps de nombres.
Corps de fonctionsEn mathématiques, un corps de fonctions est un corps commutatif F de type fini sur un corps de base K. On le note habituellement F/K, ou, si le contexte est clair, seulement F. De façon équivalente un corps de fonctions « à n variables » est une extension finie F d'un corps K(t, ... , t) de fractions rationnelles à n indéterminées. F est alors de degré de transcendance n sur K. Une extension L de k est un corps de fonctions (à n variables) si et seulement si c'est le d'une variété algébrique intègre sur k (de dimension n).
Function field of an algebraic varietyIn algebraic geometry, the function field of an algebraic variety V consists of objects which are interpreted as rational functions on V. In classical algebraic geometry they are ratios of polynomials; in complex algebraic geometry these are meromorphic functions and their higher-dimensional analogues; in modern algebraic geometry they are elements of some quotient ring's field of fractions. In complex algebraic geometry the objects of study are complex analytic varieties, on which we have a local notion of complex analysis, through which we may define meromorphic functions.
Algèbre généraleL'algèbre générale, ou algèbre abstraite, est la branche des mathématiques qui porte principalement sur l'étude des structures algébriques et de leurs relations. L'appellation algèbre générale s'oppose à celle d'algèbre élémentaire ; cette dernière enseigne le calcul algébrique, c'est-à-dire les règles de manipulation des formules et des expressions algébriques. Historiquement, les structures algébriques sont apparues dans différents domaines des mathématiques, et n'y ont pas été étudiées séparément.
Transcendental extensionIn mathematics, a transcendental extension is a field extension such that there exists an element in the field that is transcendental over the field ; that is, an element that is not a root of any univariate polynomial with coefficients in . In other words, a transcendental extension is a field extension that is not algebraic. For example, are both transcendental extensions of A transcendence basis of a field extension (or a transcendence basis of over ) is a maximal algebraically independent subset of over Transcendence bases share many properties with bases of vector spaces.
Extension cyclotomiqueEn théorie algébrique des nombres, on appelle extension cyclotomique du corps Q des nombres rationnels tout corps de rupture d'un polynôme cyclotomique, c'est-à-dire tout corps de la forme Q(ζ) où ζ est une racine de l'unité. Ces corps jouent un rôle crucial, d'une part dans la compréhension de certaines équations diophantiennes : par exemple, l'arithmétique (groupe des classes, notamment) de leur anneau des entiers permet de montrer le dernier théorème de Fermat dans de nombreux cas (voir nombre premier régulier) ; mais aussi, dans la compréhension des extensions algébriques de Q, ce qui peut être considéré comme une version abstraite du problème précédent : le théorème de Kronecker-Weber, par exemple, assure que toute extension abélienne est contenue dans une extension cyclotomique.
Extension séparableEn mathématiques, et plus spécifiquement en algèbre, une extension L d'un corps K est dite séparable si elle est algébrique et si le polynôme minimal de tout élément de L n'admet que des racines simples (dans une clôture algébrique de K). La séparabilité est une des propriétés des extensions de Galois. Toute extension finie séparable satisfait le théorème de l'élément primitif. Les corps dont toutes les extensions algébriques sont séparables (c'est-à-dire les corps parfaits) sont nombreux.
Théorie de GaloisEn mathématiques et plus précisément en algèbre, la théorie de Galois est l'étude des extensions de corps commutatifs, par le biais d'une correspondance avec des groupes de transformations sur ces extensions, les groupes de Galois. Cette méthode féconde, qui constitue l'exemple historique, a essaimé dans bien d'autres branches des mathématiques, avec par exemple la théorie de Galois différentielle, ou la théorie de Galois des revêtements. Cette théorie est née de l'étude par Évariste Galois des équations algébriques.
Groupe de Galois absoluEn mathématiques, le groupe de Galois absolu d'un corps commutatif K est le groupe de Galois d'une clôture séparable (extension algébrique séparable maximale, nécessairement normale donc galoisienne) Ksep du corps K. Dans le cas d'un corps parfait (et donc en particulier en caractéristique nulle), une clôture séparable coïncide avec une clôture algébrique. La compréhension du groupe de Galois absolu du corps des nombres rationnels est un problème important en théorie algébrique des nombres.