Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore la prévision de la demande par le biais de l'initiation du modèle, y compris l'identification des tendances, les composantes saisonnières et la détermination du niveau de base, afin de valider et de surveiller les erreurs de prévision.
Explore des modèles pour la prévision, la planification collaborative des ventes et des opérations, la gestion de la chaîne d'approvisionnement et l'optimisation des stocks.
Explore les prévisions dans l'analyse des séries chronologiques, les processus de mémoire longue et les modèles ARCH pour la modélisation de la volatilité.
Couvre les modèles ARMA pour la prévision des séries chronologiques, en discutant des implications, des propriétés des erreurs de prévision, des défis avec les prédictions et des modèles de covariance.
Couvre le processus d'étalonnage et d'analyse des données pour les mesures ConsO2, y compris la sélection des fichiers d'entrée et l'interprétation des données.
Par l'instructeur Mario Paolone explore les défis et les solutions de l'intégration de systèmes de stockage d'énergie distribués dans les réseaux électriques.