Mathématiques indiennesLa chronologie des mathématiques indiennes s'étend de la civilisation de la vallée de l'Indus (-3300 à -1500) jusqu'à l'Inde moderne. Parmi les contributions des mathématiciens indiens au développement de la discipline, la plus féconde est certainement la numération décimale de position, appuyée sur des chiffres indiens, empruntés par les Arabes et qui se sont imposés dans le monde entier. Les Indiens ont maîtrisé le zéro, les nombres négatifs, les fonctions trigonométriques.
Carré parfaitEn mathématiques, un carré parfait (ou nombre carré s'il est non nul, voire simplement carré s'il n'y a pas ambiguïté) est le carré d'un entier. Dans le système de numération décimal, le chiffre des unités d'un carré parfait ne peut être que 0, 1, 4, 5, 6 ou 9. En base douze, ces chiffres sont nécessairement 0, 1, 4 ou 9. Un carré parfait est le carré d'un entier naturel. Un nombre carré est un nombre polygonal (donc entier strictement positif) qui peut être représenté géométriquement par un carré de n × n points.
Nombre figuréEn arithmétique, un nombre figuré est un nombre entier qui peut être représenté par un ensemble de points disposés de façon plus ou moins régulière et formant une figure géométrique. Il répond donc à une classe particulière de problèmes de dénombrement. Les nombres figurés sont d'origine très ancienne. On attribue généralement à Pythagore les premières études de nombres figurés (nombres carrés). Diophante a résolu plusieurs problèmes les concernant. Pascal a écrit un traité sur le sujet.
Nombre triangulairedroite|vignette|upright=1.3|Représentation figurée des quatre premiers nombres triangulaires. vignette|upright=1.3|Le septième nombre triangulaire est 28. En arithmétique, un nombre triangulaire est un cas particulier de nombre polygonal. Il correspond à un entier naturel non nul égal au nombre de pastilles dans un triangle construit à la manière des deux figures de droite. La seconde montre que le septième nombre triangulaire — celui dont le côté porte 7 pastilles — est 28.
Racine cubiquevignette|Courbe représentative de la fonction racine cubique sur R. En mathématiques, la racine cubique d'un nombre réel est l'unique nombre réel dont le cube (c'est-à-dire la puissance ) vaut ; en d'autres termes, . La racine cubique de est notée . On peut également parler des racines cubiques d'un nombre complexe. De façon générale, on appelle racine cubique d'un nombre (réel ou complexe) tout nombre solution de l'équation : Si est réel, cette équation a dans R une unique solution, qu'on appelle la racine cubique du réel : .
Mathématiques chinoisesLes mathématiques chinoises sont apparues vers le Les Chinois développèrent de manière autonome des notations pour les grands nombres et les nombres négatifs, les décimaux et une notation positionnelle pour les représenter, le système binaire, l'algèbre, la géométrie et la trigonométrie ; leurs résultats précèdent souvent de plusieurs siècles les résultats analogues des mathématiciens occidentaux. Les mathématiciens chinois n'utilisèrent pas une approche axiomatique, mais plutôt une méthode algorithmique et des techniques algébriques, culminant au avec la création par Zhu Shijie de la méthode des quatre inconnues.
Carré (algèbre)En arithmétique et en algèbre, le carré est une opération consistant à multiplier un élément par lui-même. La notion s’applique d’abord aux nombres, et en particulier aux entiers naturels, pour lesquels le carré est figuré par une disposition en carré au sens géométrique du terme. Un nombre qui peut s’écrire comme le carré d’un entier est appelé carré parfait. Mais plus généralement, on parle du carré d’une fonction, d’une matrice, ou de tout type d’objet mathématique pour lequel il existe une opération notée multiplicativement, comme la composition des endomorphismes ou le produit cartésien.
Histoire des mathématiquesL’histoire des mathématiques s'étend sur plusieurs millénaires et dans de nombreuses régions du globe allant de la Chine à l’Amérique centrale. Jusqu'au , le développement des connaissances mathématiques s’effectue essentiellement de façon cloisonnée dans divers endroits du globe. À partir du et surtout au , le foisonnement des travaux de recherche et la mondialisation des connaissances mènent plutôt à un découpage de cette histoire en fonction des domaines mathématiques.