Loi bêta-binomialeEn théorie des probabilités, la loi bêta-binomiale est une loi de probabilité discrète à support fini, correspondant à un processus de tirages Bernoulli dont la probabilité de succès est aléatoire (suivant une loi bêta). Elle est fréquemment utilisée en inférence bayésienne. La loi de Bernoulli en est un cas particulier pour le paramètre n = 1. Pour α = β = 1, elle correspond à la loi uniforme discrète sur {0,..,n} . Elle approche également la loi binomiale lorsque les paramètres α et β sont arbitrairement grands.
Exponential dispersion modelIn probability and statistics, the class of exponential dispersion models (EDM) is a set of probability distributions that represents a generalisation of the natural exponential family. Exponential dispersion models play an important role in statistical theory, in particular in generalized linear models because they have a special structure which enables deductions to be made about appropriate statistical inference. There are two versions to formulate an exponential dispersion model.
Problème d'urneEn théorie des probabilités, un problème d'urne est une représentation d'expériences aléatoires par un tirage aléatoire uniforme de boules dans une urne. L'urne est supposée contenir un certain nombre de boules qui sont indiscernables au toucher, c'est-à-dire que lorsque l'on tire une boule à l'intérieur, le tirage est aléatoire et chaque boule à l'intérieur de l'urne a la même chance d'être tirée. Il est possible de considérer plusieurs types de tirages : des tirages successifs avec ou sans remise, des tirages simultanés, des tirages successifs dans plusieurs urnes suivant des règles prédéfinies.
Loi binomialeEn théorie des probabilités et en statistique, la loi binomiale modélise la fréquence du nombre de succès obtenus lors de la répétition de plusieurs expériences aléatoires identiques et indépendantes. Plus mathématiquement, la loi binomiale est une loi de probabilité discrète décrite par deux paramètres : n le nombre d'expériences réalisées, et p la probabilité de succès. Pour chaque expérience appelée épreuve de Bernoulli, on utilise une variable aléatoire qui prend la valeur 1 lors d'un succès et la valeur 0 sinon.
Modèle avec excès de zérosIn statistics, a zero-inflated model is a statistical model based on a zero-inflated probability distribution, i.e. a distribution that allows for frequent zero-valued observations. Zero-inflated models are commonly used in the analysis of count data, such as the number of visits a patient makes to the emergency room in one year, or the number of fish caught in one day in one lake. Count data can take values of 0, 1, 2, ... (non-negative integer values).
Indecomposable distributionIn probability theory, an indecomposable distribution is a probability distribution that cannot be represented as the distribution of the sum of two or more non-constant independent random variables: Z ≠ X + Y. If it can be so expressed, it is decomposable: Z = X + Y. If, further, it can be expressed as the distribution of the sum of two or more independent identically distributed random variables, then it is divisible: Z = X1 + X2. The simplest examples are Bernoulli-distributeds: if then the probability distribution of X is indecomposable.
Fonction bêtathumb|Variations de la fonction bêta pour les valeurs positives de x et y En mathématiques, la fonction bêta est une des deux intégrales d'Euler, définie pour tous nombres complexes x et y de parties réelles strictement positives par : et éventuellement prolongée analytiquement à tout le plan complexe à l'exception des entiers négatifs. La fonction bêta a été étudiée par Euler et Legendre et doit son nom à Jacques Binet. Elle est en relation avec la fonction gamma.