Principe variationnelUn principe variationnel est un principe physique s'exprimant sous une forme variationnelle et duquel, dans un domaine précis de la physique (mécanique, optique géométrique, électromagnétisme, etc), de nombreuses propriétés peuvent être déduites. Dans de nombreux cas, la résolution des équations se ramène à la recherche de géodésiques dans un espace approprié (en général l'espace des états du système physique étudié), sachant que ces géodésiques sont les extrémales d'une certaine intégrale représentant la longueur de l'arc joignant les points fixes dans cet espace abstrait.
Machineright|thumb|Machine à rouler les cigarettes de James Albert Bonsack (1880) Une machine est un produit fini mécanique capable d'utiliser une source d'énergie communément disponible pour effectuer par elle-même, sous la conduite ou non d'un opérateur, une ou plusieurs tâches spécifiques, en exerçant un travail mécanique sur un outil, la charge à déplacer ou la matière à façonner. Une machine peut être fixe (machine-outil, machine à laver, etc.) ou mobile (locomotive, tondeuse à gazon, machine à écrire, etc.).
Force centripèteLe terme force centripète (« qui tend à rapprocher du centre », en latin) désigne une force permettant de maintenir un objet dans une trajectoire incurvée, généralement une conique (cercle, ellipse, parabole, hyperbole). En effet, tout objet décrivant une trajectoire de ce type possède en coordonnées cylindriques une accélération radiale non nulle, appelée accélération centripète, qui est dirigée vers le centre de courbure. D'un point de vue dynamique, le principe fondamental de la dynamique (PFD) indique alors la présence d'une force radiale dirigée elle aussi vers le centre de courbure.
Géométrie symplectiqueLa géométrie symplectique est un domaine de la recherche mathématique, s'intéressant à l'origine à une formulation mathématique naturelle de la mécanique classique et développé avec une notion d'entrelacement entre la géométrie différentielle et les systèmes dynamiques, avec des applications en géométrie algébrique, en géométrie riemannienne et en géométrie de contact. Formellement, elle consiste en l'étude des 2-formes différentielles fermées non dégénérées — appelées formes symplectiques — sur les variétés différentielles.
Champ de vecteurs hamiltonienEn géométrie différentielle et plus précisément en géométrie symplectique, dans l'étude des variétés symplectiques et des variétés de Poisson, un champ de vecteurs hamiltonien est un champ de vecteurs associé à une fonction réelle différentiable appelée hamiltonien de manière semblable au champ de vecteurs gradient en géométrie riemannienne. Cependant, une des différences fondamentales est que le hamiltonien est constant le long de ses courbes intégrales. Le nom vient du mathématicien et physicien William Rowan Hamilton.
Variété de PoissonEn géométrie, une structure de Poisson sur une variété différentielle est un crochet de Lie (appelé crochet de Poisson dans ce cas) sur l'algèbre des fonctions lisses de à valeurs réelles, vérifiant formule de Leibniz En d'autres termes, une structure de Poisson est structure d'algèbre de Lie sur l'espace vectoriel des fonctions lisses sur de sorte que est un champ de vecteurs pour toute fonction lisse , appelé champ de vecteurs hamiltonien associé à . Soit une variété différentielle.
Calcul des variationsLe calcul des variations (ou calcul variationnel) est, en mathématiques et plus précisément en analyse fonctionnelle, un ensemble de méthodes permettant de minimiser une fonctionnelle. Celle-ci, qui est à valeurs réelles, dépend d'une fonction qui est l'inconnue du problème. Il s'agit donc d'un problème de minimisation dans un espace fonctionnel de dimension infinie. Le calcul des variations s'est développé depuis le milieu du jusqu'aujourd'hui ; son dernier avatar est la théorie de la commande optimale, datant de la fin des années 1950.
Dérivée fonctionnelleLa dérivée fonctionnelle est un outil mathématique du calcul des variations. Elle exprime la variation d'une fonctionnelle résultant d'une variation infinitésimale de la fonction fournie en argument. Cet outil est principalement utilisé pour trouver les extremums d'une fonctionnelle. En physique il est souvent nécessaire de minimiser une fonctionnelle, par exemple en mécanique analytique où la trajectoire suivie par un système doit minimiser l'action (voir principe de moindre action).