Singularité de SchwarzschildLa singularité de Schwarzschild est le comportement divergent de la métrique de Schwarzschild quand . Il ne faut pas la confondre avec la singularité gravitationnelle d'un trou noir. Cette singularité n'est qu'apparente : elle se manifeste dans l'expression classique de cette métrique, mais pas dans d'autres. On considère donc que c'est une singularité mathématique pour la métrique classique de Schwarzschild, mais que ce n'est pas une singularité physique.
Principe de MachEn physique théorique, le principe de Mach est une conjecture selon laquelle l'inertie des objets matériels serait induite par « l'ensemble des autres masses présentes dans l'univers », par une interaction non spécifiée. Ce principe a été forgé par le physicien Ernst Mach par extension du principe de relativité aux questions d'inertie : pour Mach, parler d'accélération ou de rotation par rapport à un espace absolu n'a aucun sens, et il vaut mieux parler d'accélération par rapport à des masses lointaines.
Rayon de SchwarzschildEn physique et en astronomie, le rayon de Schwarzschild est le rayon de l'horizon d'un trou noir de Schwarzschild, lequel est un trou noir dont la charge électrique et le moment cinétique sont nuls. Cela signifie qu'en dessous de ce rayon tous les photons (circulant à la vitesse de la lumière) ont (en oubliant qu'on est dans un cadre relativiste) des trajectoires elliptiques et ne peuvent s'échapper. Par extension, c'est une longueur intervenant dans la description relativiste du champ gravitationnel créé par une distribution de masse à symétrie sphérique.
Singularité gravitationnelleEn relativité générale, une singularité gravitationnelle est une région de l'espace-temps au voisinage de laquelle certaines quantités décrivant le champ gravitationnel deviennent infinies quel que soit le système de coordonnées retenu. Les singularités gravitationnelles sont des singularités mises en évidence par les solutions de l'équation du champ gravitationnel d'Albert Einstein. Une singularité gravitationnelle est une singularité du tenseur métrique g et non une simple singularité de coordonnées.
Équation d'Einsteinvignette|Équation sur un mur à Leyde. L’'équation d'Einstein ou équation de champ d'Einstein' (en anglais, Einstein field equation ou EFE), publiée par Albert Einstein, pour la première fois le , est l'équation aux dérivées partielles principale de la relativité générale. C'est une équation dynamique qui décrit comment la matière et l'énergie modifient la géométrie de l'espace-temps. Cette courbure de la géométrie autour d'une source de matière est alors interprétée comme le champ gravitationnel de cette source.
Tenseur de WeylEn géométrie riemannienne, le tenseur de Weyl, nommé en l'honneur d'Hermann Weyl, représente la partie du tenseur de Riemann ne possédant pas de trace. En notant respectivement R_abcd, R_ab, R et g_ab le tenseur de Riemann, le tenseur de Ricci, la courbure scalaire et le tenseur métrique, le tenseur de Weyl C_abcd s'écrit où n est la dimension de l'espace considéré. En particulier, en relativité générale, où l'on considère presque exclusivement des espaces-temps de dimension 4, on a En relativité générale, le tenseur de Ricci est lié à la présence de matière ; en l'absence de matière, le tenseur de Ricci est nul.
Stationary spacetimeIn general relativity, specifically in the Einstein field equations, a spacetime is said to be stationary if it admits a Killing vector that is asymptotically timelike. In a stationary spacetime, the metric tensor components, , may be chosen so that they are all independent of the time coordinate. The line element of a stationary spacetime has the form where is the time coordinate, are the three spatial coordinates and is the metric tensor of 3-dimensional space. In this coordinate system the Killing vector field has the components .
Fluid solutionIn general relativity, a fluid solution is an exact solution of the Einstein field equation in which the gravitational field is produced entirely by the mass, momentum, and stress density of a fluid. In astrophysics, fluid solutions are often employed as stellar models. (It might help to think of a perfect gas as a special case of a perfect fluid.) In cosmology, fluid solutions are often used as cosmological models.
Singularité annulairevignette|Horizons des événements et ergosphères d'un trou noir en rotation ; la singularité annulaire est située au niveau du nœud équatorial de l'ergosphère interne à R=a. En relativité générale, une singularité annulaire (de l'anglais ring singularity ou ringularity) est la singularité gravitationnelle d'un trou noir en rotation qui prend la forme d'un anneau. S'intégrant dans la métrique de Kerr, ce concept et sa géométrie continuent d'être l'objet de nombreux travaux scientifiques.
Temps propreEn théorie relativiste, on appelle temps propre τ d'un objet le temps mesuré dans « le » référentiel de cet objet, c'est-à-dire dans un référentiel où il est immobile. En relativité restreinte, l'intervalle de temps propre séparant deux événements est l'intervalle de temps les séparant dans un référentiel inertiel où ils ont lieu au même endroit de l'espace. En mécanique newtonienne, on décrit le mouvement d'un corps, dans un espace absolu, par rapport à un temps absolu.