Survival functionThe survival function is a function that gives the probability that a patient, device, or other object of interest will survive past a certain time. The survival function is also known as the survivor function or reliability function. The term reliability function is common in engineering while the term survival function is used in a broader range of applications, including human mortality. The survival function is the complementary cumulative distribution function of the lifetime.
Infinite divisibility (probability)In probability theory, a probability distribution is infinitely divisible if it can be expressed as the probability distribution of the sum of an arbitrary number of independent and identically distributed (i.i.d.) random variables. The characteristic function of any infinitely divisible distribution is then called an infinitely divisible characteristic function. More rigorously, the probability distribution F is infinitely divisible if, for every positive integer n, there exist n i.i.d. random variables Xn1, .
Loi d'extremum généraliséeEn probabilité et statistique, la loi d'extrémum généralisée est une famille de lois de probabilité continues qui servent à représenter des phénomènes de valeurs extrêmes (minimum ou maximum). Elle comprend la loi de Gumbel, la loi de Fréchet et la loi de Weibull, respectivement lois d'extrémum de type I, II et III. Le théorème de Fisher-Tippett-Gnedenko établit que la loi d'extremum généralisée est la distribution limite du maximum (adéquatement normalisé) d'une série de variables aléatoires indépendantes de même distribution (iid).
Loi de GumbelEn théorie des probabilités, la loi de Gumbel (ou distribution de Gumbel), du nom d'Émil Julius Gumbel, est une loi de probabilité continue. La loi de Gumbel est un cas particulier de la loi d'extremum généralisée au même titre que la loi de Weibull ou la loi de Fréchet. La loi de Gumbel est une approximation satisfaisante de la loi du maximum d'un échantillon de variables aléatoires indépendantes toutes de même loi, dès que cette loi appartient, précisément, au domaine d'attraction de la loi de Gumbel.
Lomax distributionThe Lomax distribution, conditionally also called the Pareto Type II distribution, is a heavy-tail probability distribution used in business, economics, actuarial science, queueing theory and Internet traffic modeling. It is named after K. S. Lomax. It is essentially a Pareto distribution that has been shifted so that its support begins at zero. The probability density function (pdf) for the Lomax distribution is given by with shape parameter and scale parameter .
Random variateIn probability and statistics, a random variate or simply variate is a particular outcome of a random variable; the random variates which are other outcomes of the same random variable might have different values (random numbers). A random deviate or simply deviate is the difference of a random variate with respect to the distribution central location (e.g., mean), often divided by the standard deviation of the distribution (i.e., as a standard score). Random variates are used when simulating processes driven by random influences (stochastic processes).
Loi de mélangeEn probabilité et en statistiques, une loi de mélange est la loi de probabilité d'une variable aléatoire s'obtenant à partir d'une famille de variables aléatoires de la manière suivante : une variable aléatoire est choisie au hasard parmi la famille de variables aléatoires donnée, puis la valeur de la variable aléatoire sélectionnée est réalisée. Les variables aléatoires sous-jacentes peuvent être des nombres réels aléatoires, ou des vecteurs aléatoires (chacun ayant la même dimension), auquel cas la répartition du mélange est une répartition à plusieurs variables.
Taux de défaillanceLe taux de défaillance, ou taux de panne, est une expression relative à la fiabilité des équipements et de chacun de leurs composants. Son symbole est la lettre grecque λ (lambda). Le taux de défaillance d'un équipement à l'instant t est la limite, si elle existe, du quotient de la probabilité conditionnelle que l'instant T de la (première) défaillance de cet équipement soit compris dans l'intervalle de temps donné [t, t + Δt] par la durée Δt de cet intervalle, lorsque Δt tend vers zéro, en supposant que l'entité soit disponible au début de l'intervalle de temps.
Constante d'Euler-MascheroniEn mathématiques, la constante d'Euler-Mascheroni, ou constante d'Euler, est une constante mathématique définie comme la limite de la différence entre la série harmonique et le logarithme naturel. On la note usuellement (gamma minuscule). La constante d'Euler-Mascheroni γ est définie de la manière suivante : De façon condensée, on obtient : La constante peut également être définie sous la forme explicite d'une série (telle qu'elle fut d'ailleurs introduite par Euler) : La série harmonique diverge, tout comme la suite de terme général ln(n) ; l'existence de cette constante indique que les deux expressions sont asymptotiquement liées.
Jeffreys priorIn Bayesian probability, the Jeffreys prior, named after Sir Harold Jeffreys, is a non-informative prior distribution for a parameter space; its density function is proportional to the square root of the determinant of the Fisher information matrix: It has the key feature that it is invariant under a change of coordinates for the parameter vector . That is, the relative probability assigned to a volume of a probability space using a Jeffreys prior will be the same regardless of the parameterization used to define the Jeffreys prior.