Concepts associés (51)
Loi hyper-exponentielle
En théorie des probabilités et en statistique, la loi hyper-exponentielle (ou loi hyper-exponentielle-n) est une loi de probabilité continue mélangeant plusieurs lois exponentielles. Elle dépend de trois paramètres : n le nombre de lois exponentielles indépendantes, les paramètres de ces lois exponentielles et une pondération de ces lois. Le terme hyper vient du fait que le coefficient de variation de la loi est supérieur à 1, comparativement à la loi hypo-exponentielle dont le coefficient de variation est inférieur à 1 et à la loi exponentielle dont le coefficient vaut 1.
Perte de mémoire (probabilités)
En probabilités et statistique, la perte de mémoire est une propriété de certaines lois de probabilité : la loi exponentielle et la loi géométrique. On dit que ce sont des lois sans mémoire. Cette propriété est le plus souvent exprimée en termes de . Supposons qu'une variable aléatoire soit définie comme le temps passé dans un magasin de l'heure d'ouverture (disons neuf heures du matin) à l'arrivée du premier client. On peut donc voir comme le temps qu'un serveur attend avant l'arrivée du premier client.
Ajustement de loi de probabilité
Lajustement de la loi de probabilité ou simplement lajustement de la loi est l'ajustement d'une loi de probabilité à une série de données concernant la mesure répétée d'un phénomène aléatoire. L'ajustement de la loi a pour but de prédire la probabilité ou de prévoir la fréquence d'occurrence de l'ampleur du phénomène dans un certain intervalle. Il existe de nombreuses lois de probabilité, dont certaines peuvent être ajustées plus étroitement à la fréquence observée des données que d'autres, selon les caractéristiques du phénomène et de la loi.
Courbe en baignoire
thumb|right|350px|Exemple de courbe de fiabilité: en vert les incidents aléatoires, en rouge la courbe liée au rodage, en jaune la courbe d'usure, en bleu la courbe en baignoire résultante. En ingénierie la courbe en baignoire est une représentation classique de la probabilité d'incidents pour des équipements ou des systèmes.
Generalized logistic distribution
The term generalized logistic distribution is used as the name for several different families of probability distributions. For example, Johnson et al. list four forms, which are listed below. Type I has also been called the skew-logistic distribution. Type IV subsumes the other types and is obtained when applying the logit transform to beta random variates. Following the same convention as for the log-normal distribution, type IV may be referred to as the logistic-beta distribution, with reference to the standard logistic function, which is the inverse of the logit transform.
Loi Gamma généralisée
En théorie des probabilités et en statistiques, une loi Gamma généralisée est un type de loi de probabilité de variables aléatoires réelles positives avec deux paramètres de forme (et un paramètre d'échelle), qui est une extension de la loi Gamma avec un paramètre de forme additionnel. Comme de nombreuses lois sont utilisées comme modèles paramétriques dans l'analyse de survie (telles que la loi exponentielle, la loi de Weibull et la loi Gamma) sont des cas particuliers de la loi Gamma généralisée, elle est parfois utilisée pour déterminer quel modèle paramétrique est adapté pour un jeu de données.
Frequency of exceedance
The frequency of exceedance, sometimes called the annual rate of exceedance, is the frequency with which a random process exceeds some critical value. Typically, the critical value is far from the mean. It is usually defined in terms of the number of peaks of the random process that are outside the boundary. It has applications related to predicting extreme events, such as major earthquakes and floods. The frequency of exceedance is the number of times a stochastic process exceeds some critical value, usually a critical value far from the process' mean, per unit time.
Temps moyen entre pannes
vignette|Représentation de l'état d'un système alternant entre panne et bon fonctionnement. Un écart entre deux pannes est représenté en bleu. Le temps moyen entre pannes ou durée moyenne entre pannes, souvent désigné par son sigle anglais MTBF (mean time between failures), est une des valeurs qui indiquent la fiabilité d'un composant, d'un produit ou d'un système. C'est la moyenne arithmétique du temps de fonctionnement entre les pannes d'un système réparable.
Méthode de rejet
La méthode du rejet est une méthode utilisée dans le domaine des probabilités. La méthode de rejet est utilisée pour engendrer indirectement une variable aléatoire , de densité de probabilité lorsqu'on ne sait pas simuler directement la loi de densité de probabilité (c'est le cas par exemple si n'est pas une densité classique, mais aussi pour la loi de Gauss). Soit un couple de variables aléatoires indépendantes tirées selon une loi uniforme, i.e. est un point tiré uniformément dans le carré unité.
Probability integral transform
In probability theory, the probability integral transform (also known as universality of the uniform) relates to the result that data values that are modeled as being random variables from any given continuous distribution can be converted to random variables having a standard uniform distribution. This holds exactly provided that the distribution being used is the true distribution of the random variables; if the distribution is one fitted to the data, the result will hold approximately in large samples.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.