Concept

Metric signature

Concepts associés (13)
Physique théorique
vignette|Discussion entre physiciens théoriciens à l'École de physique des Houches. La physique théorique est la branche de la physique qui étudie l’aspect théorique des lois physiques et en développe le formalisme mathématique. C'est dans ce domaine que l'on crée les théories, les équations et les constantes en rapport avec la physique. Elle constitue un champ d'études intermédiaire entre la physique expérimentale et les mathématiques, et a souvent contribué au développement de l’une comme de l’autre.
Temps propre
En théorie relativiste, on appelle temps propre τ d'un objet le temps mesuré dans « le » référentiel de cet objet, c'est-à-dire dans un référentiel où il est immobile. En relativité restreinte, l'intervalle de temps propre séparant deux événements est l'intervalle de temps les séparant dans un référentiel inertiel où ils ont lieu au même endroit de l'espace. En mécanique newtonienne, on décrit le mouvement d'un corps, dans un espace absolu, par rapport à un temps absolu.
Tenseur électromagnétique
Le tenseur électromagnétique, ou tenseur de Maxwell est le nom de l'objet mathématique décrivant la structure du champ électromagnétique en un point donné. Le tenseur électromagnétique est aussi connu comme : le tenseur d'intensité du champ électromagnétique ; le tenseur du champ magnétique ; le tenseur de Maxwell ; le tenseur de Faraday. Ce tenseur est défini dans le cadre du formalisme mathématique de la relativité restreinte, où aux trois dimensions spatiales est adjointe une dimension temporelle.
Tenseur métrique
En géométrie, et plus particulièrement en géométrie différentielle, le tenseur métrique est un tenseur d'ordre 2 permettant de définir le produit scalaire de deux vecteurs en chaque point d'un espace, et qui est utilisé pour la mesure des longueurs et des angles. Il généralise le théorème de Pythagore. Dans un système de coordonnées donné, le tenseur métrique peut se représenter comme une matrice symétrique, généralement notée , pour ne pas confondre la matrice (en majuscule) et le tenseur métrique g.
Espace de Minkowski
thumb|Représentation schématique de l'espace de Minkowski, qui montre seulement deux des trois dimensions spatiales. En géométrie et en relativité restreinte, l'espace de Minkowski du nom de son inventeur Hermann Minkowski, appelé aussi l'espace-temps de Minkowski ou parfois l'espace-temps de Poincaré-Minkowski, est un espace mathématique, et plus précisément un espace affine pseudo-euclidien à quatre dimensions, modélisant l'espace-temps de la relativité restreinte : les propriétés géométriques de cet espace correspondent à des propriétés physiques présentes dans cette théorie.
Variété pseudo-riemannienne
La géométrie pseudo-riemannienne est une extension de la géométrie riemannienne ; au même titre que, en algèbre bilinéaire, l'étude des formes bilinéaires symétriques généralisent les considérations sur les métriques euclidiennes. Cependant, cette géométrie présente des aspects non intuitifs des plus surprenants. Une métrique pseudo-riemannienne sur une variété différentielle M de dimension n est une famille g= de formes bilinéaires symétriques non dégénérées sur les espaces tangents de signature constante (p,q).
Algèbre extérieure
En mathématiques, et plus précisément en algèbre et en analyse vectorielle, l'algèbre extérieure d'un espace vectoriel E est une algèbre associative graduée, notée . La multiplication entre deux éléments a et b est appelée le produit extérieur et est notée . Le carré de tout élément de E est zéro (), on dit que la multiplication est alternée, ce qui entraîne que pour deux éléments de E : (la loi est « anti-commutative »). L'algèbre extérieure est aussi appelée algèbre de Grassmann nommée ainsi en l'honneur de Hermann Grassmann.
Espace-temps
En physique, l'espace-temps est une représentation mathématique de l'espace et du temps comme deux notions inséparables et s'influençant l'une l'autre. En réalité, ce sont deux versions (vues sous un angle différent) d'une même entité. Cette conception de l'espace et du temps est l'un des grands bouleversements survenus au début du dans le domaine de la physique, mais aussi pour la philosophie. Elle est apparue avec la relativité restreinte et sa représentation géométrique qu'est l'espace de Minkowski ; son importance a été renforcée par la relativité générale.
Métrique (physique)
En relativité restreinte et en relativité générale, une métrique est un invariant relativiste infinitésimal ayant la dimension d'une longueur. Mathématiquement, il s'agit d'un tenseur métrique relatif à la variété différentielle représentant l'espace-temps physique. En relativité générale, une métrique dans un référentiel contient toutes les informations sur la gravitation telle qu'elle y est perçue. Une métrique d'espace-temps s'exprime sous la forme d'une somme algébrique de carrés de formes différentielles linéaires.
Théorie de la relativité
vignette|Formule de la théorie de la relativité d'Albert Einstein. L'expression théorie de la relativité renvoie le plus souvent à deux théories complémentaires élaborées par Albert Einstein et Mileva Marić : la relativité restreinte (1905) et la relativité générale (1915). Ce terme peut aussi renvoyer à une idée plus ancienne, la relativité galiléenne, qui s'applique à la mécanique newtonienne. En 1905, le physicien allemand Max Planck utilise l'expression « théorie relative » (Relativtheorie), qui met l'accent sur l'usage du principe de relativité.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.