HypothèseUne hypothèse est une proposition ou un « dit » ou une explication que l'on se contente d'énoncer sans prendre position sur son caractère véridique, c'est-à-dire sans l'affirmer ou la nier. Il s'agit donc d'une simple supposition. Une fois énoncée, une hypothèse peut être étudiée, confrontée, utilisée, discutée ou traitée de toute autre façon jugée nécessaire, par exemple dans le cadre d'une démarche expérimentale.
Validité (logique)En logique, la validité est la manière dont les prémisses et la conclusion concordent logiquement dans les arguments réussis. La forme d'une argumentation déductive est dite valide si et seulement si elle utilise des règles d’inférence par lesquelles il est impossible d’obtenir une conclusion fausse à partir de prémisses vraies. Un argument est valide si et seulement si la vérité de ses prémisses entraîne celle de sa conclusion. Il serait contradictoire d'affirmer les prémisses et de nier la conclusion.
Philosophie de la logiqueLa philosophie de la logique est une partie de la philosophie des sciences qui s'intéresse à l’ensemble des problèmes théoriques qui relèvent traditionnellement de la logique, comportant essentiellement la question de son essence, son histoire depuis son origine aristotélicienne et à l'intérieur de la question philosophique, de l'extension de son domaine et de ses limites, aux côtés de la philosophie du langage, de la philosophie des sciences, du psychologisme et des mathématiques.
Raisonnement par l'absurdeLe raisonnement par l’absurde (du latin reductio ad absurdum) ou apagogie (du grec ancien apagôgê) est une forme de raisonnement logique, philosophique, scientifique consistant soit à démontrer la véracité d’une proposition en prouvant l’absurdité de la proposition complémentaire (ou « contraire »), soit à montrer la fausseté d’une proposition en déduisant logiquement d’elle des conséquences absurdes.
LinguistiqueLa linguistique est une discipline scientifique s’intéressant à l’étude du langage. Elle n'est pas prescriptive mais descriptive. La prescription correspond à la norme, c'est-à-dire ce qui est jugé correct linguistiquement par les grammairiens. À l'inverse, la linguistique se contente de décrire la langue telle qu'elle est et non telle qu'elle devrait être. On trouve des témoignages de réflexions sur le langage dès l'Antiquité avec des philosophes comme Platon.
False (logic)In logic, false or untrue is the state of possessing negative truth value and is a nullary logical connective. In a truth-functional system of propositional logic, it is one of two postulated truth values, along with its negation, truth. Usual notations of the false are 0 (especially in Boolean logic and computer science), O (in prefix notation, Opq), and the up tack symbol . Another approach is used for several formal theories (e.g., intuitionistic propositional calculus), where a propositional constant (i.
Symbole (logique)alt=Ce diagramme montre les entités syntaxiques qui peuvent être construits à partir des langages formels. Les symboles et les chaînes de symboles peuvent être divisés en formules bien formées. Un langage formel peut être considéré comme identique à l'ensemble de ses formules bien formées. L'ensemble des formules bien formées peut être divisé en théorèmes et non-théorèmes.|vignette|Ce diagramme montre les entités syntaxiques qui peuvent être construits à partir des langages formels.
Principe de bivalenceLe principe de bivalence est un principe de logique selon lequel toute proposition p ne peut avoir qu'une seule des deux valeurs de vérité. Elle est soit vraie, soit fausse. Une logique respectant le principe de bivalence est dite logique bivalente. La logique classique est bivalente. Le principe de bivalence énonce que quelque chose est soit vrai, soit faux. Quelle que soit la proposition p, p est soit vraie, soit fausse. Le principe de bivalence rend les deux valeurs de vérité que sont le vrai et le faux conjointement exhaustifs.
Principia MathematicaLes Principia Mathematica sont une œuvre en trois volumes d'Alfred North Whitehead et Bertrand Russell, publiés en 1910-1913. Cette œuvre a pour sujet les fondements des mathématiques. Avec en particulier l'idéographie de Gottlob Frege, c'est un ouvrage fondamental, dans la mesure où il participe de façon décisive à la naissance de la logique moderne. Entre 1898 et 1903, Whitehead travaille à l'édition d'un deuxième volume de son .
Categorical propositionIn logic, a categorical proposition, or categorical statement, is a proposition that asserts or denies that all or some of the members of one category (the subject term) are included in another (the predicate term). The study of arguments using categorical statements (i.e., syllogisms) forms an important branch of deductive reasoning that began with the Ancient Greeks. The Ancient Greeks such as Aristotle identified four primary distinct types of categorical proposition and gave them standard forms (now often called A, E, I, and O).