Régularités naturellesLes régularités dans la nature sont des formes répétées que l'on trouve dans le monde naturel, telles que les spirales, les arbres, la disposition de traits ou de fentes, les chants d'oiseau. Chaque régularité peut être simulée mathématiquement et peut s'expliquer à un niveau physique, chimique ou biologique (sélection naturelle). Cette branche de la mathématique applique des simulations informatiques à une grande gamme de formes. Le philosophe grec Platon (env. 427 – env.
Flocon de KochLe flocon de Koch () est l'une des premières courbes fractales à avoir été décrites, bien avant l'invention du terme « fractal(e) » par Benoît Mandelbrot. Elle a été inventée en 1904 par le mathématicien suédois Helge von Koch. thumb|Les 4 premières étapes de la construction. thumb|Les 6 premières courbes successives en animation. On peut la créer à partir d'un segment de droite, en modifiant récursivement chaque segment de droite de la façon suivante : On divise le segment de droite en trois segments de longueurs égales.
Dimension fractaleEn géométrie fractale, la dimension fractale, D, est une grandeur qui a vocation à traduire la façon qu'a un ensemble fractal de remplir l'espace, à toutes les échelles. Dans le cas des fractales, elle est non entière et supérieure à la dimension topologique. Ce terme est un terme générique qui recouvre plusieurs définitions. Chacune peut donner des résultats différents selon l'ensemble considéré, il est donc essentiel de mentionner la définition utilisée lorsqu'on valorise la dimension fractale d'un ensemble.
Fractalevignette|Exemple de figure fractale (détail de l'ensemble de Mandelbrot)|alt=Exemple de figure fractale (détail de l'ensemble de Mandelbrot). vignette|Ensemble de Julia en . Une figure fractale est un objet mathématique qui présente une structure similaire à toutes les échelles. C'est un objet géométrique « infiniment morcelé » dont des détails sont observables à une échelle arbitrairement choisie. En zoomant sur une partie de la figure, il est possible de retrouver toute la figure ; on dit alors qu’elle est « auto similaire ».