Resolution (algebra)In mathematics, and more specifically in homological algebra, a resolution (or left resolution; dually a coresolution or right resolution) is an exact sequence of modules (or, more generally, of s of an ), which is used to define invariants characterizing the structure of a specific module or object of this category. When, as usually, arrows are oriented to the right, the sequence is supposed to be infinite to the left for (left) resolutions, and to the right for right resolutions.
Idempotent (ring theory)In ring theory, a branch of mathematics, an idempotent element or simply idempotent of a ring is an element a such that a2 = a. That is, the element is idempotent under the ring's multiplication. Inductively then, one can also conclude that a = a2 = a3 = a4 = ... = an for any positive integer n. For example, an idempotent element of a matrix ring is precisely an idempotent matrix. For general rings, elements idempotent under multiplication are involved in decompositions of modules, and connected to homological properties of the ring.
Groupe divisibleEn mathématiques, et plus particulièrement en théorie des groupes, un groupe abélien divisible est un groupe abélien G tel que, pour tout nombre naturel n ≥ 1, on ait (en notation additive) G = nG. Ceci revient à dire que pour tout élément x de G et tout nombre naturel n ≥ 1, il existe au moins un élément y de G tel que x = ny. On peut étendre cette définition aux groupes non abéliens, un groupe divisible étant un groupe dans lequel (en notation multiplicative) tout élément est n-ième puissance, quel que soit l'entier naturel n ≥ 1.
Module platLa notion de module plat a été introduite et utilisée, en géométrie algébrique, par Jean-Pierre Serre. Cette notion se trouve également dans un ouvrage contemporain d'Henri Cartan et Samuel Eilenberg en algèbre homologique. Elle généralise les modules projectifs et a fortiori les modules libres. En algèbre commutative et en géométrie algébrique, cette notion a été notamment exploitée par Alexander Grothendieck et son école, et s'est révélée d'une importance considérable.
Module projectifEn mathématiques, un module projectif est un module P (à gauche par exemple) sur un anneau A tel que pour tout morphisme surjectif f : N → M entre deux A-modules (à gauche) et pour tout morphisme g : P → M, il existe un morphisme h : P → N tel que g = fh, c'est-à-dire tel que le diagramme suivant commute : center Autrement dit : P est projectif si pour tout module N, tout morphisme de P vers un quotient de N se factorise par N.
Injective objectIn mathematics, especially in the field of , the concept of injective object is a generalization of the concept of injective module. This concept is important in cohomology, in homotopy theory and in the theory of . The dual notion is that of a projective object. An in a is said to be injective if for every monomorphism and every morphism there exists a morphism extending to , i.e. such that . That is, every morphism factors through every monomorphism . The morphism in the above definition is not required to be uniquely determined by and .
Endomorphism ringIn mathematics, the endomorphisms of an abelian group X form a ring. This ring is called the endomorphism ring of X, denoted by End(X); the set of all homomorphisms of X into itself. Addition of endomorphisms arises naturally in a pointwise manner and multiplication via endomorphism composition. Using these operations, the set of endomorphisms of an abelian group forms a (unital) ring, with the zero map as additive identity and the identity map as multiplicative identity.
Foncteur ExtLes foncteurs Ext sont les foncteurs dérivés du foncteur Hom. Ils sont d'abord apparus en algèbre homologique, où ils jouent un rôle central par exemple dans le théorème des coefficients universels, mais interviennent aujourd'hui dans de nombreuses branches différentes des mathématiques. Ce foncteur apparaît originellement dans l'étude des extensions de modules, d'où il tire son nom. Soit A une catégorie abélienne. D'après le théorème de plongement de Mitchell, on peut toujours imaginer travailler avec une catégorie de modules.
Anneau artinienEn algèbre commutative, un anneau artinien est un anneau vérifiant la condition de chaîne descendante pour ses idéaux. Les anneaux artiniens doivent leur nom au mathématicien autrichien Emil Artin. On dit qu'un anneau commutatif (unitaire) A est un anneau artinien si c'est un A-module artinien, autrement dit, si toute suite décroissante d'idéaux de A est stationnaire. Cela équivaut à dire que tout ensemble non vide d'idéaux de A admet un élément minimal (pour la relation d'inclusion).
Module semi-simplethumb|Camille Jordan, auteur du théorème clé de la théorie En mathématiques et plus précisément en algèbre non commutative, un module sur un anneau est dit semi-simple ou complètement réductible s'il est somme directe de sous-modules simples ou, ce qui est équivalent, si chacun de ses sous-modules possède un supplémentaire. Les propriétés des modules semi-simples sont utilisées en algèbre linéaire pour l'analyse des endomorphismes, dans le cadre des anneaux semi-simples et pour la théorie des représentations des groupes.