In mathematics, particularly topology, an atlas is a concept used to describe a manifold. An atlas consists of individual charts that, roughly speaking, describe individual regions of the manifold. If the manifold is the surface of the Earth, then an atlas has its more common meaning. In general, the notion of atlas underlies the formal definition of a manifold and related structures such as vector bundles and other fiber bundles.
Topological manifold#Coordinate charts
The definition of an atlas depends on the notion of a chart. A chart for a topological space M (also called a coordinate chart, coordinate patch, coordinate map, or local frame) is a homeomorphism from an open subset U of M to an open subset of a Euclidean space. The chart is traditionally recorded as the ordered pair .
An atlas for a topological space is an indexed family of charts on which covers (that is, ). If the codomain of each chart is the n-dimensional Euclidean space, then is said to be an n-dimensional manifold.
The plural of atlas is atlases, although some authors use atlantes.
An atlas on an -dimensional manifold is called an adequate atlas if the of each chart is either or , is a locally finite open cover of , and , where is the open ball of radius 1 centered at the origin and is the closed half space. Every second-countable manifold admits an adequate atlas. Moreover, if is an open covering of the second-countable manifold then there is an adequate atlas on such that is a refinement of .
A transition map provides a way of comparing two charts of an atlas. To make this comparison, we consider the composition of one chart with the inverse of the other. This composition is not well-defined unless we restrict both charts to the intersection of their domains of definition. (For example, if we have a chart of Europe and a chart of Russia, then we can compare these two charts on their overlap, namely the European part of Russia.)
To be more precise, suppose that and are two charts for a manifold M such that is non-empty.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
We develop, analyze and implement numerical algorithms to solve optimization problems of the form: min f(x) where x is a point on a smooth manifold. To this end, we first study differential and Rieman
The monstrous moonshine is an unexpected connection between the Monster group and modular functions. In the course we will explain the statement of the conjecture and study the main ideas and concepts
En mathématiques, et plus particulièrement en géométrie, la notion de variété peut être appréhendée intuitivement comme la généralisation de la classification qui établit qu'une courbe est une variété de dimension 1 et une surface est une variété de dimension 2. Une variété de dimension n, où n désigne un entier naturel, est un espace topologique localement euclidien, c'est-à-dire dans lequel tout point appartient à une région qui s'apparente à un tel espace.
En mathématiques, les variétés différentielles ou variétés différentiables sont les objets de base de la topologie différentielle et de la géométrie différentielle. Il s'agit de variétés, « espaces courbes » localement modelés sur l'espace euclidien de dimension n, sur lesquelles il est possible de généraliser une bonne part des opérations du calcul différentiel et intégral. Une variété différentielle se définit donc d'abord par la donnée d'une variété topologique, espace topologique localement homéomorphe à l'espace R.
In mathematical analysis, the smoothness of a function is a property measured by the number of continuous derivatives it has over some domain, called differentiability class. At the very minimum, a function could be considered smooth if it is differentiable everywhere (hence continuous). At the other end, it might also possess derivatives of all orders in its domain, in which case it is said to be infinitely differentiable and referred to as a C-infinity function (or function).
Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).
This work focuses on the study of several computational challenges arising when trimmed surfaces are directly employed for the isogeometric analysis of Kirchhoff-Love shells. To cope with these issues and to resolve mechanical and/or geometrical features o ...
We present a novel method named truncated hierarchical unstructured splines (THU-splines) that supports both local h-refinement and unstructured quadrilateral meshes. In a THU-spline construction, an unstructured quadrilateral mesh is taken as the input co ...
MATHICSE2021
Representing and reconstructing 3D deformable shapes are two tightly linked problems that have long been studied within the computer vision field. Deformable shapes are truly ubiquitous in the real world, whether be it specific object classes such as human ...