Traitement du signalLe traitement du signal est la discipline qui développe et étudie les techniques de traitement, d'analyse et d' des . Parmi les types d'opérations possibles sur ces signaux, on peut dénoter le contrôle, le filtrage, la compression et la transmission de données, la réduction du bruit, la déconvolution, la prédiction, l'identification, la classification Bien que cette discipline trouve son origine dans les sciences de l'ingénieur (particulièrement l'électronique et l'automatique), elle fait aujourd'hui largement appel à de nombreux domaines des mathématiques, comme la , les processus stochastiques, les espaces vectoriels et l'algèbre linéaire et des mathématiques appliquées, notamment la théorie de l'information, l'optimisation ou encore l'analyse numérique.
George PólyaGeorge (György) Pólya, né à Budapest (Hongrie) le dans une famille juive hongroise convertie au catholicisme en 1886 et mort à Palo Alto (États-Unis) le , est un mathématicien américain d'origine hongroise et suisse. Après des études secondaires classiques, il est admis en 1905 à l'université de Budapest où il passe du droit à la linguistique, à la philosophie et finalement à la physique et aux mathématiques. En 1910-1911, il poursuit ses études à l'université de Vienne puis retourne à Budapest pour un doctorat de mathématiques, et séjourne bientôt à Göttingen puis à Paris en 1914.
Espace probabiliséUn espace de probabilité(s) ou espace probabilisé est construit à partir d'un espace probabilisable en le complétant par une mesure de probabilité : il permet la modélisation quantitative de l'expérience aléatoire étudiée en associant une probabilité numérique à tout événement lié à l'expérience. Formellement, c'est un triplet formé d'un ensemble , d'une tribu sur et d'une mesure sur cette tribu tel que . L'ensemble est appelé l'univers et les éléments de sont appelés les événements.
Modèle mathématiquevignette|Un automate fini est un exemple de modèle mathématique. Un modèle mathématique est une traduction d'une observation dans le but de lui appliquer les outils, les techniques et les théories mathématiques, puis généralement, en sens inverse, la traduction des résultats mathématiques obtenus en prédictions ou opérations dans le monde réel. Un modèle se rapporte toujours à ce qu’on espère en déduire.
Martingale (calcul stochastique)Une martingale est une séquence de variables aléatoires (autrement dit un processus stochastique), telles que l'espérance mathématique à l'instant , conditionnellement à l'information disponible à un moment préalable , notée , vaut (avec ). En particulier, dans un processus discret (t entier), . Une martingale peut modéliser les gains / pertes accumulés par un joueur au cours de répétitions indépendantes d'un jeu de hasard à espérance nulle (même si le joueur s'autorise à modifier sa mise en fonction des gains passés), d'où l'emprunt du terme martingale au monde du jeu.
Modèle statistiqueUn modèle statistique est une description mathématique approximative du mécanisme qui a généré les observations, que l'on suppose être un processus stochastique et non un processus déterministe. Il s’exprime généralement à l’aide d’une famille de distributions (ensemble de distributions) et d’hypothèses sur les variables aléatoires X1, . . ., Xn. Chaque membre de la famille est une approximation possible de F : l’inférence consiste donc à déterminer le membre qui s’accorde le mieux avec les données.
Convergence de variables aléatoiresDans la théorie des probabilités, il existe différentes notions de convergence de variables aléatoires. La convergence (dans un des sens décrits ci-dessous) de suites de variables aléatoires est un concept important de la théorie des probabilités utilisé notamment en statistique et dans l'étude des processus stochastiques. Par exemple, la moyenne de n variables aléatoires indépendantes et identiquement distribuées converge presque sûrement vers l'espérance commune de ces variables aléatoires (si celle-ci existe).
Andreï Markov (mathématicien)Andreï Andreïevitch Markov (en Андрей Андреевич Марков) (1856-1922) est un mathématicien russe. Il est considéré comme le fondateur de la théorie des processus stochastiques. La mère d'Andreï Markov, Nadejda Petrovna, est la fille d'un ouvrier d'État. Son père, Andreï Grigorievitch Markov, membre de la petite noblesse, sert dans le département des forêts, puis devient gestionnaire de domaine privé. Dans ses premières années, Markov est en mauvaise santé et jusqu'à l'âge de dix ans, il ne peut marcher qu'à l'aide de béquilles.
Processus de LévyEn théorie des probabilités, un processus de Lévy, nommé d'après le mathématicien français Paul Lévy, est un processus stochastique en temps continu, continu à droite limité à gauche (càdlàg), partant de 0, dont les accroissements sont stationnaires et indépendants (cette notion est expliquée ci-dessous). Les exemples les plus connus sont le processus de Wiener et le processus de Poisson.
Probabilitévignette|Quatre dés à six faces de quatre couleurs différentes. Les six faces possibles sont visibles. Le terme probabilité possède plusieurs sens : venu historiquement du latin probabilitas, il désigne l'opposé du concept de certitude ; il est également une évaluation du caractère probable d'un événement, c'est-à-dire qu'une valeur permet de représenter son degré de certitude ; récemment, la probabilité est devenue une science mathématique et est appelée théorie des probabilités ou plus simplement probabilités ; enfin une doctrine porte également le nom de probabilisme.