CubeEn géométrie euclidienne, un cube est un prisme droit dont toutes les faces sont carrées donc égales et superposables. Le cube figure parmi les solides les plus remarquables de l'espace. C'est le seul des cinq solides de Platon ayant exactement 6 faces, 12 arêtes et 8 sommets. Son autre nom est « hexaèdre régulier ». Le cube est un zonoèdre à trois générateurs. Comme il a quatre sommets par face et trois faces par sommet, son symbole de Schläfli est {4,3}. L'étymologie du mot cube est grecque ; cube provient de kubos, le dé.
OctaèdreEn géométrie, un octaèdre (du grec oktô, huit et hedra, face) est un polyèdre à huit faces. Certains octaèdres satisfont des conditions de symétrie ou de régularité des faces : l'octaèdre régulier, le prisme hexagonal, la pyramide à base heptagonale, le tétraèdre tronqué, le trapézoèdre tétragonal. Un octaèdre dont toutes les faces sont triangulaires possède douze arêtes et six sommets. Fichier:Octahedron.svg | Octaèdre régulier Fichier:Hexagonal_prism.png | Prisme hexagonal Fichier:Truncated_tetrahedron.
DécagoneUn décagone est un polygone à 10 sommets, donc 10 côtés et 35 diagonales. La somme des angles internes d'un décagone non croisé vaut °. Un décagone régulier est un décagone dont les dix côtés ont la même longueur et dont les angles internes ont même mesure. Il y en a deux : un étoilé (le décagramme noté {10/3}) et un convexe (noté {10}). C'est de ce dernier qu'il s'agit lorsqu'on dit « le décagone régulier ». Il est constructible. L'aire d'un décagone régulier de côté a vaut Cette construction est excessivement simple mais n'est pas forcément exacte : Tracer un cercle Γ de centre O.
Dodécaèdre adouciLe dodécaèdre adouci ou icosidodécaèdre adouci est un solide d'Archimède. Le dodécaèdre possède 92 faces dont 12 sont des pentagones et les 80 autres sont des triangles équilatéraux. Il possède aussi 150 arêtes et 60 sommets. Il a deux formes distinctes, qui sont les images dans un miroir (ou énantiomorphes) l'une de l'autre. Le dodécaèdre peut être engendré en prenant les douze faces pentagonales du dodécaèdre, en les tirant de telle façon qu'aucune ne se touchent, puis en leur donnant toutes une petite rotation de leurs centres (toutes en sens horaire (Sh) ou toutes en sens anti-horaire (Sah)) jusqu'à ce que l'espace entre elles puisse être rempli par des triangles équilatéraux.
Stellationdroite|vignette|200px|Exemple de la stellation en trois dimensions, ici un dodécaèdre étoilé En géométrie, la stellation est un procédé de construction de nouveaux polygones (en dimension 2), de nouveaux polyèdres (en 3D), ou, en général, de nouveaux polytopes en dimension n, en étendant les arêtes ou faces planes, généralement de manière symétrique, jusqu'à ce que chacune d'entre elles se rejoignent de nouveau. La nouvelle figure, avec un aspect étoilé, est appelée une stellation de l'original.
AntiprismeUn antiprisme à n faces est un polyèdre composé de deux copies d'un certain polygone particulier à n côtés, connecté par une bande de triangles alternés. Les antiprismes sont une sous-classe des prismatoïdes. Les antiprismes sont similaires aux prismes excepté le fait que les bases sont tournées relativement l'une à l'autre, et que les faces des côtés sont des triangles, plutôt que des quadrilatères : les sommets sont symétriquement alternés. Dans le cas d'une base régulière à n côtés, on considère généralement le cas où sa copie est tournée d'un angle de 180°/n.
OmnitruncationIn geometry, an omnitruncation of a convex polytope is a simple polytope of the same dimension, having a vertex for each flag of the original polytope and a facet for each face of any dimension of the original polytope. Omnitruncation is the dual operation to barycentric subdivision. Because the barycentric subdivision of any polytope can be realized as another polytope, the same is true for the omnitruncation of any polytope.
Harold Scott MacDonald CoxeterHarold Scott MacDonald « Donald » Coxeter (, Londres - , Toronto, Canada) est un mathématicien britannique. Il est considéré comme un des grands géomètres du . Une de ses idées originales fut de définir une conique comme une courbe autoduale. Il s'est fait connaître par son travail sur les polytopes réguliers et la géométrie en dimension supérieure. Il a rencontré M. C. Escher et son œuvre géométrique a été une source importante d'inspiration pour ce dernier. Il a aussi inspiré certaines des innovations de Buckminster Fuller.
Tétraèdre équifacialEn géométrie, un tétraèdre équifacial, ou disphénoïde (du grec sphenoeides, « en forme de coin »), est un tétraèdre (non plan) dont les quatre faces sont des triangles isométriques. Une condition équivalente est que les arêtes opposées soient de même longueur. Il a été signalé dans les Annales de Gergonne dès 1810, puis beaucoup étudié par les géomètres des s. Le tétraèdre régulier est équifacial mais un tétraèdre équifacial peut avoir des arêtes de trois longueurs différentes.
Pavage hexagonal tronquéIn geometry, the truncated hexagonal tiling is a semiregular tiling of the Euclidean plane. There are 2 dodecagons (12-sides) and one triangle on each vertex. As the name implies this tiling is constructed by a truncation operation applies to a hexagonal tiling, leaving dodecagons in place of the original hexagons, and new triangles at the original vertex locations. It is given an extended Schläfli symbol of t{6,3}. Conway calls it a truncated hextille, constructed as a truncation operation applied to a hexagonal tiling (hextille).