En mathématiques, et plus particulièrement en théorie analytique des nombres, la formule de Perron est une formule d'Oskar Perron pour calculer la fonction sommatoire () d'une fonction arithmétique, au moyen d'une transformation de Mellin inverse de la série de Dirichlet associée. Soient (a(n)) une fonction arithmétique etoù l'étoile sur le symbole de sommation indique que le dernier terme doit être multiplié par 1/2 quand x est entier.Nous supposons que la série de Dirichlet classique admet une abscisse de convergence simple finie σ.Alors, la formule de Perron est : pour tous réels c > max(0, σ) et x > 0,où l'intégrale est semi-convergente pour x non entier et converge en valeur principale pour x entier. Pour une série de Dirichlet générale, de la formeon a de même, pour tous nombres réels c > max(0, σ) et y ∊ ]λ, λ[, Soit pour , d'abscisse de convergence absolue finie . Alors on a, si Soit pour , d'abscisse de convergence absolue finie , et où pour une fonction croissante (au sens large). On suppose de plus que, pour un nombre réel , quand Alors on a, si Pour les trois formules concernant les séries de Dirichlet classiques, on part du lemme suivant établi par le calcul des résidus. Il reste ensuite à multiplier par a/n et sommer sur n. Une preuve de la formule de Perron pour une série de Dirichlet classique consiste à appliquer d'abord ce lemme lorsque c est strictement supérieur à l'abscisse de convergence absolue σ de la série. Si on a seulement c > σ, alors c + 1 > σ et le théorème intégral de Cauchy permet de se ramener au cas précédent.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (1)
PHYS-105: Advanced physics II (thermodynamics)
Ce cours présente la thermodynamique en tant que théorie permettant une description d'un grand nombre de phénomènes importants en physique, chimie et ingéniere, et d'effets de transport. Une introduc

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.