Fonction algébriqueEn mathématiques, une fonction algébrique d'indéterminées est une fonction F qui satisfait l'équation non triviale où P est un polynôme à n + 1 variables sur un corps commutatif K. En cela, F est une fonction implicite qui résout une équation algébrique. Un exemple simple serait La classe des fonctions algébriques contient toutes les fonctions rationnelles, mais est plus grande. Du point de vue de l'algèbre générale, il s'agit, pour tout ensemble fixé d'indéterminées, de la clôture algébrique du corps des fonctions rationnelles.
Valeur principaleEn mathématiques, plus particulièrement en analyse complexe, les valeurs principales d'une fonction à plusieurs valeurs sont les valeurs le long d'une branche choisie de cette fonction, de sorte qu'elle est à valeur unique. Le cas le plus simple se présente en prenant la racine carrée d'un nombre réel positif. Par exemple, 4 a deux racines carrées : 2 et −2 ; parmi ceux-ci, la racine positive, 2, est considérée comme la racine principale et est notée . On considère la fonction logarithme complexe ln(z) .
ExsecantThe exsecant (exsec, exs) and excosecant (excosec, excsc, exc) are trigonometric functions defined in terms of the secant and cosecant functions. They used to be important in fields such as surveying, railway engineering, civil engineering, astronomy, and spherical trigonometry and could help improve accuracy, but are rarely used today except to simplify some calculations.
Équation fonctionnelleEn mathématiques, une équation fonctionnelle est une équation dont les inconnues sont des fonctions. De nombreuses propriétés de fonctions peuvent être déterminées en étudiant les équations auxquelles elles satisfont. D'habitude, le terme « équation fonctionnelle » est réservé aux équations qu'on ne peut pas ramener à des équations plus simples, par exemple à des équations différentielles.
Fraction continue généraliséeEn mathématiques, une fraction continue généralisée est une expression de la forme : comportant un nombre fini ou infini d'étages. C'est donc une généralisation des fractions continues simples puisque dans ces dernières, tous les a sont égaux à 1. Une fraction continue généralisée est une généralisation des fractions continues où les numérateurs et dénominateurs partiels peuvent être des complexes quelconques : où an (n > 0) sont les numérateurs partiels et les bn les dénominateurs partiels.
Fonction hyperboliqueEn mathématiques, on appelle fonctions hyperboliques les fonctions cosinus hyperbolique, sinus hyperbolique et tangente hyperbolique. Les noms « sinus », « cosinus » et « tangente » proviennent de leur ressemblance avec les fonctions trigonométriques (dites « circulaires » car en relation avec le cercle unité x + y = 1) et le terme « hyperbolique » provient de leur relation avec l'hyperbole d'équation x – y = 1. Elles sont utilisées en analyse pour le calcul intégral, la résolution des équations différentielles mais aussi en géométrie hyperbolique.
Fonction transcendanteEn mathématiques, une fonction ou une série formelle est dite transcendante si elle n'est pas algébrique, c'est-à-dire si elle n'est pas solution d'une équation polynomiale à coefficients polynomiaux par rapport à ses arguments. Cette notion est donc, au même titre que celle de nombre transcendant, un cas particulier de celle d'élément transcendant d'une algèbre sur un anneau commutatif, l'algèbre et l'anneau considérés étant ici soit les fonctions de certaines variables (à valeurs dans un anneau commutatif R) et les fonctions polynomiales en ces variables (à coefficients dans R), soit les séries formelles et les polynômes (en une ou plusieurs indéterminées).
Fonction signeLa fonction signe, ou signum en latin, souvent représentée sgn dans les expressions, est une fonction mathématique qui extrait le signe d'un nombre réel, c'est-à-dire que l' d'un nombre par cette application est 1 si le nombre est strictement positif, 0 si le nombre est nul, et -1 si le nombre est strictement négatif : La fonction signe peut également s’écrire : On peut aussi la construire en résultat d'une limite, notamment en jouant avec les propriétés de certaines fonctions hyperboliques.
Sinus verseLe sinus verse est une fonction trigonométrique peu utilisée de nos jours. Elle est généralement notée versin, vers ou encore sin v. et définie comme : Le sinus verse est une fonction introduite par les Indiens (dans le Surya Siddhanta (c. 400) et dans l'Āryabhaṭīya () dérivée de la notion de flèche. Tout comme le sinus indien (jya) c'est une longueur associée à un arc d'un cercle de rayon donné. Appelée utkrama-jya, elle correspond dans un cercle à la flèche de l'arc double, tout comme jya correspond à la demi-corde de l'arc double, c'est-à-dire R sin(θ).
Function of a real variableIn mathematical analysis, and applications in geometry, applied mathematics, engineering, and natural sciences, a function of a real variable is a function whose domain is the real numbers , or a subset of that contains an interval of positive length. Most real functions that are considered and studied are differentiable in some interval. The most widely considered such functions are the real functions, which are the real-valued functions of a real variable, that is, the functions of a real variable whose codomain is the set of real numbers.