Corde (géométrie)vignette|Diamètre, rayon, arc et corde d’un cercle. En géométrie, une corde est un segment reliant deux points d’un cercle ou d’une autre courbe. vignette Une corde d'un cercle de rayon interceptant un angle au centre de mesure est de longueur . Une corde d'un cercle est donc de longueur inférieure à celle du diamètre , avec égalité si et seulement si ses deux extrémités sont diamétralement opposées. Formule des cordes consécutives : Soient trois points d'un cercle de diamètre , et étant situés de part et d'autre du diamètre issu de .
Formule d'EulerLa formule d'Euler est une égalité mathématique, attribuée au mathématicien suisse Leonhard Euler. Elle s'écrit, pour tout nombre réel x, et se généralise aux x complexes. Ici, le nombre e est la base des logarithmes naturels, i est l'unité imaginaire, sin et cos sont des fonctions trigonométriques. Cette formule peut être interprétée en disant que la fonction x ↦ e, appelée fonction cis, décrit le cercle unité dans le plan complexe lorsque x varie dans l'ensemble des nombres réels.
RadianLe radian (symbole : rad) est l'unité d'angle (plan ou dièdre) du Système international. Par définition, un angle ayant son sommet au centre d'un cercle a une mesure d'un radian s'il intercepte, sur la circonférence de ce cercle, un arc d'une longueur égale à celle du rayon du cercle. Bien que le mot « radian » ait été inventé au cours des années 1870 par Thomas Muir et James Thomson, les mathématiciens mesuraient depuis longtemps les angles en prenant pour unité le rapport entre la circonférence et la longueur du rayon.
Loi des sinusEn trigonométrie, la loi des sinus est une relation de proportionnalité entre les longueurs des côtés d'un triangle et les sinus des angles respectivement opposés. Elle permet, connaissant deux angles et un côté, de calculer la longueur des autres côtés. Il existe une formule des sinus de présentation analogue en trigonométrie sphérique. Ces lois sont énoncées et démontrées, pour la forme sphérique, par Abu Nasr Mansur au début du et, pour la forme plane, par Nasir al-Din al-Tusi au début du .
Tour (angle)One turn (symbol tr or pla) is a unit of plane angle measurement equal to 2π radians, 360 degrees or 400 gradians. Thus it is the angular measure subtended by a complete circle at its center. Subdivisions of a turn include half-turns and quarter-turns, spanning a semicircle and a right angle, respectively; metric prefixes can also be used as in, e.g., centiturns (ctr), milliturns (mtr), etc. As an angular unit, one turn also corresponds to one cycle (symbol cyc or c) or to one revolution (symbol rev or r).
Théorème de Taylorredresse=1.5|vignette|Représentation de la fonction logarithme (en noir) et des approximations de Taylor au point 1 (en vert). En mathématiques, plus précisément en analyse, le théorème de Taylor (ou formule de Taylor), du nom du mathématicien anglais Brook Taylor qui l'établit en 1715, montre qu'une fonction plusieurs fois dérivable au voisinage d'un point peut être approchée par une fonction polynomiale dont les coefficients dépendent uniquement des dérivées de la fonction en ce point.
Série de Taylorthumb|Brook Taylor, dont la série porte le nom. En mathématiques, et plus précisément en analyse, la série de Taylor au point d'une fonction (réelle ou complexe) indéfiniment dérivable en ce point, appelée aussi le développement en série de Taylor de en , est une série entière approchant la fonction autour de , construite à partir de et de ses dérivées successives en . Elles portent le nom de Brook Taylor, qui les a introduites en 1715.
Théorème de factorisation de WeierstrassEn mathématiques, et plus précisément en analyse, le théorème de factorisation de Weierstrass, nommé en l'honneur de Karl Weierstrass, affirme que les fonctions entières peuvent être représentées par un produit infini, appelé produit de Weierstrass, mettant en jeu leurs zéros. Du développement en série entière suivant pour u ∈ ]–1;1[ : on déduit que la fonction tronquée aux m premiers termes est sensiblement égale à 1 sur [–1 ; 1], sauf dans un voisinage de u = 1 où elle admet un zéro d'ordre 1.
Fonction lemniscatiqueEn mathématiques, les fonctions lemniscatiques sont des fonctions elliptiques liées à la longueur d'arc d'une lemniscate de Bernoulli ; ces fonctions ont beaucoup d'analogies avec les fonctions trigonométriques. Elles ont été étudiées par Giulio Fagnano en 1718 ; leur analyse approfondie, et en particulier la détermination de leurs périodes, a été obtenue par Carl Friedrich Gauss en 1796. Ces fonctions ont un réseau de périodes carré, et sont étroitement reliées à la fonction elliptique de Weierstrass dont les invariants sont g2 = 1 et g3 = 0.
MilliradianA milliradian (SI-symbol mrad, sometimes also abbreviated mil) is an SI derived unit for angular measurement which is defined as a thousandth of a radian (0.001 radian). Milliradians are used in adjustment of firearm sights by adjusting the angle of the sight compared to the barrel (up, down, left, or right). Milliradians are also used for comparing shot groupings, or to compare the difficulty of hitting different sized shooting targets at different distances.