Dirichlet processIn probability theory, Dirichlet processes (after the distribution associated with Peter Gustav Lejeune Dirichlet) are a family of stochastic processes whose realizations are probability distributions. In other words, a Dirichlet process is a probability distribution whose range is itself a set of probability distributions. It is often used in Bayesian inference to describe the prior knowledge about the distribution of random variables—how likely it is that the random variables are distributed according to one or another particular distribution.
Modèle de Markov cachéUn modèle de Markov caché (MMC, terme et définition normalisés par l’ISO/CÉI [ISO/IEC 2382-29:1999]) — (HMM)—, ou plus correctement (mais non employé) automate de Markov à états cachés, est un modèle statistique dans lequel le système modélisé est supposé être un processus markovien de paramètres inconnus. Contrairement à une chaîne de Markov classique, où les transitions prises sont inconnues de l'utilisateur mais où les états d'une exécution sont connus, dans un modèle de Markov caché, les états d'une exécution sont inconnus de l'utilisateur (seuls certains paramètres, comme la température, etc.
Famille exponentielleEn théorie des probabilités et en statistique, une famille exponentielle est une classe de lois de probabilité dont la forme générale est donnée par : où est la variable aléatoire, est un paramètre et est son paramètre naturel. Les familles exponentielles présentent certaines propriétés algébriques et inférentielles remarquables. La caractérisation d'une loi en famille exponentielle permet de reformuler la loi à l'aide de ce que l'on appelle des paramètres naturels.
Modèle probitEn statistiques, le modèle probit est un modèle de régression binomiale. Le modèle probit a été introduit par Chester Bliss en 1934. C'est un cas particulier du modèle linéaire généralisé. Soit Y une variable aléatoire binaire (i.e. prenant pour valeur 0 ou 1) et X un vecteur de variables dont on suppose qu'il influence Y. On fait l'hypothèse que le modèle s'écrit de la manière suivante : où désigne la fonction de répartition de la loi normale centrée réduite. Régression logistique Catégorie:Modèle statist
Allocation de Dirichlet latenteDans le domaine du traitement automatique des langues, l’allocation de Dirichlet latente (de l’anglais Latent Dirichlet Allocation) ou LDA est un modèle génératif probabiliste permettant d’expliquer des ensembles d’observations, par le moyen de groupes non observés, eux-mêmes définis par des similarités de données. Par exemple, si les observations () sont les mots collectés dans un ensemble de documents textuels (), le modèle LDA suppose que chaque document () est un mélange () d’un petit nombre de sujets ou thèmes ( topics), et que la génération de chaque occurrence d’un mot () est attribuable (probabilité) à l’un des thèmes () du document.
Compound probability distributionIn probability and statistics, a compound probability distribution (also known as a mixture distribution or contagious distribution) is the probability distribution that results from assuming that a random variable is distributed according to some parametrized distribution, with (some of) the parameters of that distribution themselves being random variables. If the parameter is a scale parameter, the resulting mixture is also called a scale mixture.
Topic modelvignette|Visualisation du résumé d'un article scientifique traité par topic model. L'intensité de la couleur varie selon la probabilité d'appartenir au topic en question. En apprentissage automatique et en traitement automatique du langage naturel, un topic model (modèle thématique ou « modèle de sujet ») est un modèle probabiliste permettant de déterminer des sujets ou thèmes abstraits dans un document. Analyse sémantique latente (LSA) Allocation de Dirichlet latente (LDA) Analyse sémantique latente probab
Maximum a posterioriL'estimateur du maximum a posteriori (MAP), tout comme la méthode du maximum de vraisemblance, est une méthode pouvant être utilisée afin d'estimer un certain nombre de paramètres inconnus, comme les paramètres d'une densité de probabilité, reliés à un échantillon donné. Cette méthode est très liée au maximum de vraisemblance mais en diffère toutefois par la possibilité de prendre en compte un a priori non uniforme sur les paramètres à estimer.
Variable latenteIn statistics, latent variables (from Latin: present participle of lateo, “lie hidden”) are variables that can only be inferred indirectly through a mathematical model from other observable variables that can be directly observed or measured. Such latent variable models are used in many disciplines, including political science, demography, engineering, medicine, ecology, physics, machine learning/artificial intelligence, bioinformatics, chemometrics, natural language processing, management, psychology and the social sciences.
Loi de probabilité marginaleEn théorie des probabilités et en statistique, la loi marginale d'un vecteur aléatoire, c'est-à-dire d'une variable aléatoire à plusieurs dimensions, est la loi de probabilité d'une de ses composantes. Autrement dit, la loi marginale est une variable aléatoire obtenue par « projection » d'un vecteur contenant cette variable. Par exemple, pour un vecteur aléatoire , la loi de la variable aléatoire est la deuxième loi marginale du vecteur. Pour obtenir la loi marginale d'un vecteur, on projette la loi sur l'espace unidimensionnel de la coordonnée recherchée.