Concepts associés (16)
Linear complex structure
In mathematics, a complex structure on a real vector space V is an automorphism of V that squares to the minus identity, −I. Such a structure on V allows one to define multiplication by complex scalars in a canonical fashion so as to regard V as a complex vector space. Every complex vector space can be equipped with a compatible complex structure, however, there is in general no canonical such structure. Complex structures have applications in representation theory as well as in complex geometry where they play an essential role in the definition of almost complex manifolds, by contrast to complex manifolds.
G-structure on a manifold
In differential geometry, a G-structure on an n-manifold M, for a given structure group G, is a principal G-subbundle of the tangent frame bundle FM (or GL(M)) of M. The notion of G-structures includes various classical structures that can be defined on manifolds, which in some cases are tensor fields. For example, for the orthogonal group, an O(n)-structure defines a Riemannian metric, and for the special linear group an SL(n,R)-structure is the same as a volume form.
Complex differential form
In mathematics, a complex differential form is a differential form on a manifold (usually a complex manifold) which is permitted to have complex coefficients. Complex forms have broad applications in differential geometry. On complex manifolds, they are fundamental and serve as the basis for much of algebraic geometry, Kähler geometry, and Hodge theory. Over non-complex manifolds, they also play a role in the study of almost complex structures, the theory of spinors, and CR structures.
Generalized complex structure
In the field of mathematics known as differential geometry, a generalized complex structure is a property of a differential manifold that includes as special cases a complex structure and a symplectic structure. Generalized complex structures were introduced by Nigel Hitchin in 2002 and further developed by his students Marco Gualtieri and Gil Cavalcanti.
Géométrie symplectique
La géométrie symplectique est un domaine de la recherche mathématique, s'intéressant à l'origine à une formulation mathématique naturelle de la mécanique classique et développé avec une notion d'entrelacement entre la géométrie différentielle et les systèmes dynamiques, avec des applications en géométrie algébrique, en géométrie riemannienne et en géométrie de contact. Formellement, elle consiste en l'étude des 2-formes différentielles fermées non dégénérées — appelées formes symplectiques — sur les variétés différentielles.
Nigel Hitchin
Nigel James Hitchin (né le à Holbrook, Derbyshire, Angleterre) est un mathématicien britannique, spécialiste de géométrie différentielle et algébrique, qu'il applique notamment à la physique théorique. Il est actuellement professeur émérite à l'Université d'Oxford. Après des études élémentaires à l'école d'Ecclesbourne à Duffield, Hitchin obtient son BA en mathématiques à l'Université d'Oxford (Jesus College) en 1968.
Variété complexe
Les variétés complexes ou plus généralement les sont les objets d'étude de la géométrie analytique complexe. Une variété complexe de dimension n est un espace topologique obtenu par recollement d'ouverts de Cn selon des biholomorphismes, c'est-à-dire des bijections holomorphes. Plus précisément, une variété complexe de dimension n est un espace topologique dénombrable à l'infini (c'est-à-dire localement compact et σ-compact) possédant un atlas de cartes sur Cn, tel que les applications de changement de cartes soient des biholomorphismes.
Fibré principal
En topologie, de manière informelle, un fibré principal sur un espace topologique X est un espace ressemblant localement à un produit de X par un groupe topologique. En particulier, un fibré principal est un espace fibré, mais c'est bien plus encore. Il est muni d'un groupe, le groupe structural, décrivant la manière dont les trivialisations locales se recollent entre elles. La théorie des fibrés principaux recouvre la théorie des fibrés vectoriels, de leurs orientations, de leurs structures riemanniennes, de leurs structures symplectiques, etc.
Variété symplectique
En mathématiques, une variété symplectique est une variété différentielle munie d'une forme différentielle de degré 2 fermée et non dégénérée, appelée forme symplectique. L'étude des variétés symplectiques relève de la géométrie symplectique. Les variétés symplectiques apparaissent dans les reformulations analytiques abstraites de la mécanique classique utilisant la notion de fibré cotangent d'une variété, notamment dans la reformulation hamiltonnienne, où les configurations d'un système forment une variété dont le fibré cotangent décrit l'espace des phases du système.
Variété kählérienne
En mathématiques, une variété kählérienne ou variété de Kähler est une variété différentielle équipée d'une structure unitaire satisfaisant une condition d'intégrabilité. C'est en particulier une variété riemannienne, une variété symplectique et une variété complexe, ces trois structures étant mutuellement compatibles. Les variétés kählériennes sont un objet d'étude naturel en géométrie différentielle complexe. Elles doivent leur nom au mathématicien Erich Kähler. Plusieurs définitions équivalentes existent.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.