Ensemble dénombrableEn mathématiques, un ensemble est dit dénombrable, ou infini dénombrable, lorsque ses éléments peuvent être listés sans omission ni répétition dans une suite indexée par les entiers. Certains ensembles infinis, au contraire, contiennent « trop » d'éléments pour être parcourus complètement par l'infinité des entiers et sont donc dits « non dénombrables ». Il existe deux usages du mot « dénombrable » en mathématiques, suivant que l'on comprend ou non parmi les ensembles dénombrables les ensembles finis, dont les éléments peuvent être numérotés par les entiers positifs inférieurs à une valeur donnée.
Cantor's first set theory articleCantor's first set theory article contains Georg Cantor's first theorems of transfinite set theory, which studies infinite sets and their properties. One of these theorems is his "revolutionary discovery" that the set of all real numbers is uncountably, rather than countably, infinite. This theorem is proved using Cantor's first uncountability proof, which differs from the more familiar proof using his diagonal argument.
Théorème de Cantorvignette|Georg Cantor Le théorème de Cantor est un théorème mathématique, dans le domaine de la théorie des ensembles. Il énonce que le cardinal d'un ensemble E est toujours strictement inférieur au cardinal de l'ensemble de ses parties P(E), c'est-à-dire essentiellement qu'il n'existe pas de bijection entre E et P(E). Combiné avec l'axiome de l'ensemble des parties et l'axiome de l'infini de la théorie des ensembles usuelle, ce théorème implique qu'il existe une hiérarchie infinie d'ensembles infinis en termes de cardinalité.
Fonction récursive primitiveEn théorie de la calculabilité, une fonction récursive primitive est une fonction construite à partir de la fonction nulle, de la fonction successeur, des fonctions projections et des schémas de récursion primitive (ou bornée) et de composition. Ces fonctions constituent un sous-ensemble strict des fonctions récursives. Elles ont été initialement analysées par la mathématicienne Rózsa Péter. On s'intéresse aux fonctions définies sur l'ensemble des entiers naturels, ou sur les ensembles des -uplets d'entiers naturels, et à valeurs dans .
Nombre transcendantEn mathématiques, un nombre transcendant sur les rationnels est un nombre réel ou complexe qui n'est racine d'aucun polynôme non nuloù n est un entier naturel et les coefficients a sont des rationnels non tous nuls, ou encore (en multipliant ces n + 1 rationnels par un dénominateur commun) qui n'est racine d'aucun polynôme non nul à coefficients entiers. Un nombre réel ou complexe est donc transcendant si et seulement s’il n'est pas algébrique. Comme tout nombre rationnel est algébrique, tout nombre transcendant est donc un nombre irrationnel.
Hypothèse du continuEn théorie des ensembles, l'hypothèse du continu (HC), due à Georg Cantor, affirme qu'il n'existe aucun ensemble dont le cardinal est strictement compris entre le cardinal de l'ensemble des entiers naturels et celui de l'ensemble des nombres réels. En d'autres termes : tout ensemble strictement plus grand, au sens de la cardinalité, que l'ensemble des entiers naturels doit contenir une « copie » de l'ensemble des nombres réels.
Dimension de HausdorffEn mathématiques, et plus précisément en topologie, la dimension de Hausdorff d'un espace métrique (X,d) est un nombre réel positif ou nul, éventuellement l'infini. Introduite en 1918 par le mathématicien Felix Hausdorff, elle a été développée par Abram Besicovitch, c'est pourquoi elle est parfois appelée dimension de Hausdorff-Besicovitch. L'exemple le plus simple est l'espace euclidien de dimension (au sens des espaces vectoriels) égale à n (ou plus généralement un espace vectoriel réel de dimension n muni d'une distance associée à une norme) : sa dimension de Hausdorff d est aussi égale à n, dimension de l'espace vectoriel.
Théorie naïve des ensemblesLes ensembles sont d'une importance fondamentale en mathématiques ; en fait, de manière formelle, la mécanique interne des mathématiques (nombres, relations, fonctions, etc.) peut se définir en termes d'ensembles. Il y a plusieurs façons de développer la théorie des ensembles et plusieurs théories des ensembles existent. Par théorie naïve des ensembles, on entend le plus souvent un développement informel d'une théorie des ensembles dans le langage usuel des mathématiques, mais fondée sur les axiomes de la théorie des ensembles de Zermelo ou de Zermelo-Fraenkel avec axiome du choix dans le style du livre Naive Set Theory de Paul Halmos.
Développement décimal de l'unitéEn mathématiques, le développement décimal périodique qui s'écrit 0,999..., que l'on dénote encore par ou ou , représente un nombre réel dont on peut montrer que c'est le nombre 1. En d'autres termes, les deux notations 0,999... et 1 sont deux notations différentes pour le même nombre. Les démonstrations mathématiques de cette identité ont été formulées avec des degrés variés de rigueur mathématique, et selon les préférences relatives à la définition des nombres réels, les hypothèses sous-jacentes, le contexte historique et le public visé.
Construction des nombres réelsEn mathématiques, il existe différentes constructions des nombres réels, dont les deux plus connues sont : les coupures de Dedekind, qui définissent, via la théorie des ensembles, un réel comme l'ensemble des rationnels qui lui sont strictement inférieurs ; les suites de Cauchy, qui définissent, via l'analyse, un réel comme une suite de rationnels convergeant vers lui. C'est à partir des années 1860 que la nécessité de présenter une construction des nombres réels se fait de plus en plus pressante, dans le but d'asseoir l'analyse sur des fondements rigoureux.