Concepts associés (16)
Série de Fourier
vignette|250px|Les quatre premières sommes partielles de la série de Fourier pour un signal carré. vignette|250px|Le premier graphe donne l'allure du graphe d'une fonction périodique ; l'histogramme donne les valeurs des modules des coefficients de Fourier correspondant aux différentes fréquences. En analyse mathématique, les séries de Fourier sont un outil fondamental dans l'étude des fonctions périodiques. C'est à partir de ce concept que s'est développée la branche des mathématiques connue sous le nom d'analyse harmonique.
Signal carré
vignette|Formes d'onde sinusoïdale, carrée, triangulaire et en dents de scie. Un signal carré est une sorte d'onde non–sinusoïdale que l'on rencontre le plus souvent en électronique ou dans le cas du traitement du signal. Un signal carré idéal alternerait régulièrement et instantanément entre deux niveaux. On peut obtenir de tels signaux à l'aide d'un générateur de créneaux. On rencontre couramment les signaux carrés dans les circuits de commutation numérique et dans les systèmes binaires logiques où ils sont tout naturellement générés.
Forme d'onde
La forme d'onde d'un signal est la représentation graphique de l'évolution de l'amplitude instantanée d'une onde physique périodique ou aléatoire en fonction du temps. Il peut s'agir d'une onde mécanique ou d'une onde électromagnétique. La représentation d'une forme d'onde utilise le principe des coordonnées cartésiennes, avec le temps en abscisse et l'amplitude en ordonnée. Une forme d'onde peut être observée avec un oscilloscope à bande passante appropriée lorsqu'il s'agit d'un signal électrique direct ou issu de capteurs.
Échantillonnage (signal)
L'échantillonnage consiste à prélever les valeurs d'un signal à intervalles définis, généralement réguliers. Il produit une suite de valeurs discrètes nommées échantillons. L'application la plus courante de l'échantillonnage est aujourd'hui la numérisation d'un signal variant dans le temps, mais son principe est ancien. Depuis plusieurs siècles, on surveille les mouvements lents en inscrivant, périodiquement, les valeurs relevées dans un registre : ainsi des hauteurs d'eau des marées ou des rivières, de la quantité de pluie.
Signal sinusoïdal
thumb|upright|Signal sinusoïdal simple. Un signal sinusoïdal est un signal continu (onde) dont l’amplitude, observée à un endroit précis, est une fonction sinusoïdale du temps, définie à partir de la fonction sinus. La courbe associée s'appelle une sinusoïde (voir Figure 1). Un signal sinusoïdal est caractérisé par son amplitude maximale et sa fréquence.
Fonction périodique
En mathématiques, une fonction périodique est une fonction qui lorsqu'elle est appliquée à une variable, reprend la même valeur si on ajoute à cette variable une certaine quantité fixe appelée période. Des exemples de telles fonctions peuvent être obtenus à partir de phénomènes périodiques, comme l'heure indiquée par la petite aiguille d'une horloge, les phases de la lune, etc. thumb|La fonction sinus est périodique de période 2π.
Sine and cosine
In mathematics, sine and cosine are trigonometric functions of an angle. The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side that is opposite that angle to the length of the longest side of the triangle (the hypotenuse), and the cosine is the ratio of the length of the adjacent leg to that of the hypotenuse. For an angle , the sine and cosine functions are denoted simply as and .
Fréquence fondamentale
En acoustique musicale, la fréquence fondamentale est l'inverse de la période d'un son complexe. Cette fréquence détermine la hauteur du son musical. Un son est une vibration de l'air. Cette vibration peut souvent s'assimiler à un phénomène périodique ; c'est le cas notamment des sons de voyelles émis par la voix humaine et de tous les instruments capables de produire une note de musique. Un phénomène périodique se caractérise par sa période, qui est la durée qui se reproduit identiquement lorsqu'on se décale dans le temps de cette même durée.
Oscilloscope
thumb|Un oscilloscope. Un oscilloscope, ou oscillographe, est un instrument de mesure destiné à visualiser un signal électrique, le plus souvent variable au cours du temps. Il permet d'observer les variations temporelles, soit de tensions électriques, soit de diverses autres grandeurs physiques préalablement transformées en tension au moyen de convertisseurs adaptés ou de capteurs. La courbe de rendu d'un oscilloscope est appelée oscillogramme.
Phénomène de Gibbs
En mathématiques, lors de l'étude des séries de Fourier et des transformées de Fourier, il apparaît parfois une déformation du signal, connue sous le nom de phénomène de Gibbs. Ce phénomène est un effet de bord qui se produit à proximité d'une discontinuité, lors de l'analyse d'une fonction dérivable par morceaux. Le phénomène fut mis pour la première fois en évidence en 1848 par Henry Wilbraham, mais cette découverte ne connut guère d'écho.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.