Dualité de Pontriaguinevignette|La transformée de Fourier En mathématiques, notamment en analyse harmonique et dans la théorie des groupes topologiques, la dualité de Pontriaguine explique les principales propriétés de la transformée de Fourier.
Sinus cardinalEn mathématiques, la fonction sinus cardinal est une fonction définie à partir de la fonction trigonométrique sinus apparaissant fréquemment dans des problèmes de physique ondulatoire. La fonction sinus cardinal est définie par : où sin désigne la fonction sinus. Il existe une autre définition couramment utilisée : Quand une confusion pourra être possible, on notera par la suite sinc (resp. sinc) la première (et respectivement la seconde) version de la fonction. La seconde est parfois nommée sinus cardinal normalisé.
Fonction de transfertEn traitement du signal, une fonction de transfert est un modèle mathématique de la relation entre l'entrée et la sortie d'un système linéaire, le plus souvent invariant. Elle est utilisée notamment en théorie des communications, en automatique, et dans toutes les sciences de l'ingénieur qui font appel à cette discipline (électronique, mécanique, mécatronique). Les signaux d'entrée et de sortie ci-dessus peuvent avoir plusieurs composantes, auquel cas on précise souvent (sans que ce soit une obligation) que la fonction de transfert est une matrice de transfert.
Integral transformIn mathematics, an integral transform maps a function from its original function space into another function space via integration, where some of the properties of the original function might be more easily characterized and manipulated than in the original function space. The transformed function can generally be mapped back to the original function space using the inverse transform. An integral transform is any transform of the following form: The input of this transform is a function , and the output is another function .
Produit de convolutionEn mathématiques, le produit de convolution est un opérateur bilinéaire et un produit commutatif, généralement noté « ∗ », qui, à deux fonctions f et g sur un même domaine infini, fait correspondre une autre fonction « f ∗ g » sur ce domaine, qui en tout point de celui-ci est égale à l'intégrale sur l'entièreté du domaine (ou la somme si celui-ci est discret) d'une des deux fonctions autour de ce point, pondérée par l'autre fonction autour de l'origine — les deux fonctions étant parcourues en sens contraire
AutocorrélationL'autocorrélation est un outil mathématique souvent utilisé en traitement du signal. C'est la corrélation croisée d'un signal par lui-même. L'autocorrélation permet de détecter des régularités, des profils répétés dans un signal comme un signal périodique perturbé par beaucoup de bruit, ou bien une fréquence fondamentale d'un signal qui ne contient pas effectivement cette fondamentale, mais l'implique avec plusieurs de ses harmoniques. Note : La confusion est souvent faite entre l'auto-covariance et l'auto-corrélation.
Fonction périodiqueEn mathématiques, une fonction périodique est une fonction qui lorsqu'elle est appliquée à une variable, reprend la même valeur si on ajoute à cette variable une certaine quantité fixe appelée période. Des exemples de telles fonctions peuvent être obtenus à partir de phénomènes périodiques, comme l'heure indiquée par la petite aiguille d'une horloge, les phases de la lune, etc. thumb|La fonction sinus est périodique de période 2π.
Fonction entièreEn analyse complexe, une fonction entière est une fonction holomorphe définie sur tout le plan complexe. C'est le cas notamment de la fonction exponentielle complexe, des fonctions polynomiales et de leurs combinaisons par composition, somme et produit, telles que sinus, cosinus et les fonctions hyperboliques. Le quotient de deux fonctions entières est une fonction méromorphe. Considérée comme un cas particulier de la théorie des fonctions analytiques, la théorie élémentaire des fonctions entières ne fait que tirer les conséquences de la théorie générale.
Peigne de Diracvignette|La distribution peigne de Dirac est une série infinie de distributions de Dirac espacées de T.|208x208pxEn mathématiques, la distribution peigne de Dirac, ou distribution cha (d'après la lettre cyrillique Ш), est une somme de distributions de Dirac espacées de T : Cette distribution périodique est particulièrement utile dans les problèmes d'échantillonnage, remplacement d'une fonction continue par une suite de valeurs de la fonction séparées par un pas de temps T (voir Théorème d'échantillonnage de Nyquist-Shannon).
Polynôme d'HermiteEn mathématiques, les polynômes d'Hermite sont une suite de polynômes qui a été nommée ainsi en l'honneur de Charles Hermite (bien qu'ils aient été définis, sous une autre forme, en premier par Pierre-Simon Laplace en 1810, surtout été étudiés par Joseph-Louis Lagrange lors de ses travaux sur les probabilités puis en détail par Pafnouti Tchebychev six ans avant Hermite). Ils sont parfois décrits comme des polynômes osculateurs.