In mathematics, a submanifold of a manifold M is a subset S which itself has the structure of a manifold, and for which the inclusion map S → M satisfies certain properties. There are different types of submanifolds depending on exactly which properties are required. Different authors often have different definitions. In the following we assume all manifolds are differentiable manifolds of class Cr for a fixed r ≥ 1, and all morphisms are differentiable of class Cr. An immersed submanifold of a manifold M is the image S of an immersion map f : N → M; in general this image will not be a submanifold as a subset, and an immersion map need not even be injective (one-to-one) – it can have self-intersections. More narrowly, one can require that the map f : N → M be an injection (one-to-one), in which we call it an injective immersion, and define an immersed submanifold to be the image subset S together with a topology and differential structure such that S is a manifold and the inclusion f is a diffeomorphism: this is just the topology on N, which in general will not agree with the subset topology: in general the subset S is not a submanifold of M, in the subset topology. Given any injective immersion f : N → M the of N in M can be uniquely given the structure of an immersed submanifold so that f : N → f(N) is a diffeomorphism. It follows that immersed submanifolds are precisely the images of injective immersions. The submanifold topology on an immersed submanifold need not be the subspace topology inherited from M. In general, it will be finer than the subspace topology (i.e. have more open sets). Immersed submanifolds occur in the theory of Lie groups where Lie subgroups are naturally immersed submanifolds. They also appear in the study of foliations where immersed submanifolds provide the right context to prove the Frobenius theorem. An embedded submanifold (also called a regular submanifold), is an immersed submanifold for which the inclusion map is a topological embedding. That is, the submanifold topology on S is the same as the subspace topology.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (4)
MATH-322: Differential geometry II - smooth manifolds
Smooth manifolds constitute a certain class of topological spaces which locally look like some Euclidean space R^n and on which one can do calculus. We introduce the key concepts of this subject, such
MATH-473: Complex manifolds
The goal of this course is to help students learn the basic theory of complex manifolds and Hodge theory.
MATH-410: Riemann surfaces
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
Afficher plus
Publications associées (10)
MOOCs associés (1)
Introduction to optimization on smooth manifolds: first order methods
Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.