Concepts associés (36)
Nombre de croisements (théorie des graphes)
vignette| Une représentation du graphe de Heawood avec trois croisements. C'est le nombre minimum de croisements parmi toutes les représentations de ce graphe, qui a donc un nombre de croisements . En théorie des graphes, le nombre de croisements d'un graphe G est le plus petit nombre d'intersections d'arêtes d'un tracé du graphe G. Par exemple, un graphe est planaire si et seulement si son nombre de croisements est nul. La détermination du nombre de croisements tient une place importante dans le tracé de graphes.
Isomorphisme de graphes
En mathématiques, dans le cadre de la théorie des graphes, un isomorphisme de graphes est une bijection entre les sommets de deux graphes qui préserve les arêtes. Ce concept est en accord avec la notion générale d'isomorphisme, une bijection qui préserve les structures. Plus précisément, un isomorphisme f entre les graphes G et H est une bijection entre les sommets de G et ceux de H, telle qu'une paire de sommets {u, v} de G est une arête de G si et seulement si {ƒ(u), ƒ(v)} est une arête de H.
Théorie des graphes
vignette|Un tracé de graphe. La théorie des graphes est la discipline mathématique et informatique qui étudie les graphes, lesquels sont des modèles abstraits de dessins de réseaux reliant des objets. Ces modèles sont constitués par la donnée de sommets (aussi appelés nœuds ou points, en référence aux polyèdres), et d'arêtes (aussi appelées liens ou lignes) entre ces sommets ; ces arêtes sont parfois non symétriques (les graphes sont alors dits orientés) et sont alors appelées des flèches ou des arcs.
Kuratowski's theorem
In graph theory, Kuratowski's theorem is a mathematical forbidden graph characterization of planar graphs, named after Kazimierz Kuratowski. It states that a finite graph is planar if and only if it does not contain a subgraph that is a subdivision of (the complete graph on five vertices) or of (a complete bipartite graph on six vertices, three of which connect to each of the other three, also known as the utility graph).
Arbre (théorie des graphes)
En théorie des graphes, un arbre est un graphe acyclique et connexe. Sa forme évoque en effet la ramification des branches d'un arbre. Par opposition aux arbres simples, arbres binaires, ou arbres généraux de l'analyse d'algorithme ou de la combinatoire analytique, qui sont des plongements particuliers d'arbres (graphes) dans le plan, on appelle parfois les arbres (graphes) arbres de Cayley, car ils sont comptés par la formule de Cayley. Un ensemble d'arbres est appelé une forêt.
Matrice d'adjacence
En mathématiques, en théorie des graphes, en informatique, une matrice d'adjacence pour un graphe fini à n sommets est une matrice de dimension n × n dont l'élément non diagonal a est le nombre d'arêtes liant le sommet i au sommet j. L'élément diagonal a est le nombre de boucles au sommet i (pour des graphes simples, ce nombre est donc toujours égal à 0 ou 1). Cet outil mathématique est très utilisé comme structure de données en informatique (tout comme la représentation par liste d'adjacence), mais intervient aussi naturellement dans les chaînes de Markov.
Pál Turán
Pál Turán, né le à Budapest et décédé le , est un mathématicien hongrois connu comme l'auteur du théorème de Turán. Son nombre d'Erdős est 1. Il était l'époux de Vera Sós Turán, mathématicienne elle aussi. Théorème d'Erdős-Kac Histoire de la fonction zêta de Riemann Université Loránd Eötvös Prix Kossuth Théorème de Szemerédi Conjecture d'Erdős-Turán sur les bases additives Inégalité d'Erdős-Turán Graphe de Turán Catégorie:Naissance à Budapest Catégorie:Naissance en août 1910 Catégorie:Naissance dans le roya
Ensemble dominant
En théorie des graphes, un ensemble dominant (ou dominating set en anglais) d'un graphe G = ( S, A ) est un sous-ensemble D de l'ensemble S des sommets tel que tout sommet qui n'appartient pas à D possède au moins une arête d'extrémité un sommet de D. Le problème de l'ensemble dominant est de déterminer, étant donné G et un entier naturel k, si G possède un ensemble dominant d'au plus k sommets. Ce problème est NP-complet.
Matrice laplacienne
En théorie des graphes, une matrice laplacienne, ou matrice de Laplace, est une matrice représentant un graphe. La matrice laplacienne d'un graphe G non orienté et non réflexif est définie par : où est la matrice des degrés de G et la matrice d'adjacence de G. Formellement : A la différence de la matrice d'adjacence d'un graphe, la matrice laplacienne a une interprétation algébrique ce qui rend son analyse spectrale fructueuse. Plus précisément la matrice correspond à l'opérateur de diffusion sur le graphe.
Graphe étoile
thumb|upright=3|Les graphes en étoile S3, S4, S5 et S6. En mathématiques, et plus particulièrement en théorie des graphes, une étoile Sk est le graphe biparti complet K1,k. On peut aussi le voir comme un arbre avec un nœud et k feuilles, du moins lorsque k > 1. Enfin, on peut le définir comme un graphe connexe dont tous les sommets sauf un sont de degré 1. Certains auteurs définissent toutefois Sk comme l'arbre à k sommets de diamètre maximal 2. Attention, avec cette définition, une étoile n'a que k − 1 feuilles.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.