Test de primalitévignette|Le 39e nombre premier de Mersenne découvert à ce jour pour un article sur la primalité Un test de primalité est un algorithme permettant de savoir si un nombre entier est premier. Le test le plus simple est celui des divisions successives : pour tester N, on vérifie s’il est divisible par l’un des entiers compris au sens large entre 2 et N-1. Si la réponse est négative, alors N est premier, sinon il est composé.
Théorème d'Euler (arithmétique)vignette|Leonhard Euler (1753) En mathématiques, le théorème d'Euler ou d'Euler-Fermat en arithmétique modulaire, publié en 1761 par le mathématicien suisse Leonhard Euler, s'énonce ainsi : Ce théorème est une généralisation du petit théorème de Fermat qui, lui, ne traite que le cas où n est un nombre premier. Il se démontre en remarquant que l'exposant λ(n) (appelé l'indicatrice de Carmichael de n) du groupe (Z/nZ) des inversibles de l'anneau Z/nZ est un diviseur de l'ordre φ(n) de ce groupe (cette propriété, commune à tous les groupes finis, se déduit du théorème de Lagrange sur les groupes).
Nombre de Carmichaelvignette|Robert Daniel Carmichael En théorie des nombres, un nombre de Carmichael (portant le nom du mathématicien américain Robert Daniel Carmichael), ou nombre absolument pseudo-premier, est un nombre composé n qui vérifie la propriété suivante, satisfaite par tous les nombres premiers d'après le petit théorème de Fermat : pour tout entier a premier avec n, n est un diviseur de a – 1. C'est donc un nombre pseudo-premier de Fermat en toute base première avec lui (on peut d'ailleurs se restreindre aux entiers a de 2 à n – 1 dans cette définition).
Inverse modulaireEn mathématiques et plus précisément en arithmétique modulaire, l'inverse modulaire d'un entier relatif pour la multiplication modulo est un entier satisfaisant l'équation : En d'autres termes, il s'agit de l'inverse dans l'anneau des entiers modulo n, noté Z/nZ ou Z. Une fois ainsi défini, peut être noté , étant entendu implicitement que l'inversion est modulaire et se fait modulo . La définition est donc équivalente à : L'inverse de a modulo existe si et seulement si et sont premiers entre eux, (c.-à-d.
Parité (arithmétique)En arithmétique modulaire, étudier la parité d'un entier, c'est déterminer si cet entier est ou non un multiple de deux. Un entier multiple de deux est un entier pair, les autres sont les entiers impairs. L'opposition pair/impair apparaît chez Épicharme (vers 490 av. J.-C.) : (Diogène Laërce, III, 11). Chez les pythagoriciens, la notion de limité est positive comme celle d'illimité négative, et le nombre impair est masculin, limité, positif, tandis que le nombre pair est féminin, illimité, négatif.
Test de primalité de Fermatvignette|Si le test de Fermat échoue, alors le nombre est composé. Si le test réussit, il y a de fortes chances que le nombre soit premier (illustration inspirée de , p. 30). En algorithmique, le test de primalité de Fermat est un test de primalité probabiliste basé sur le petit théorème de Fermat. Il est de type Monte-Carlo : s'il détecte qu'un nombre est composé alors il a raison ; en revanche, il peut se tromper s'il prétend que le nombre est premier.
Robert Daniel CarmichaelRobert Daniel Carmichael ( - ) est un mathématicien américain. Carmichael est né à , Alabama en 1879. Il étudie au College de Lineville où il reçoit son B.A. en 1898 tout en travaillant à son doctorat à l'université de Princeton, qu'il reçoit en 1911. Sa thèse, écrite sous la direction de George David Birkhoff, fut considérée comme la première contribution significative d'un américain aux équations différentielles.
Algèbre généraleL'algèbre générale, ou algèbre abstraite, est la branche des mathématiques qui porte principalement sur l'étude des structures algébriques et de leurs relations. L'appellation algèbre générale s'oppose à celle d'algèbre élémentaire ; cette dernière enseigne le calcul algébrique, c'est-à-dire les règles de manipulation des formules et des expressions algébriques. Historiquement, les structures algébriques sont apparues dans différents domaines des mathématiques, et n'y ont pas été étudiées séparément.
Logarithme discretLe logarithme discret est un objet mathématique utilisé en cryptologie. C'est l'analogue du logarithme réel qui est la réciproque de l'exponentielle, mais dans un groupe cyclique G fini. Le logarithme discret est utilisé pour la cryptographie à clé publique, typiquement dans l'échange de clés Diffie-Hellman et le chiffrement El Gamal.
Indicatrice de Carmichaelvignette|upright=2|Fonction λ de Carmichael : λ(n) pour 1 ≤ n ≤ 1000 (avec les valeurs de la fonction φ d'Euler en comparaison) La fonction indicatrice de Carmichael, ou indicateur de Carmichael ou encore fonction de Carmichael, notée λ, est définie sur les entiers naturels strictement positifs ; elle associe à un entier n le plus petit entier m vérifiant, pour tout entier a premier avec n, am ≡ 1 mod n. Elle est introduite par Robert Daniel Carmichael dans un article de 1910.