Dernier théorème de FermatEn mathématiques, et plus précisément en théorie des nombres, le dernier théorème de Fermat, ou grand théorème de Fermat, ou depuis sa démonstration théorème de Fermat-Wiles, s'énonce comme suit : Énoncé par Pierre de Fermat d'une manière similaire dans une note marginale de son exemplaire d'un livre de Diophante, il a cependant attendu plus de trois siècles une preuve publiée et validée, établie par le mathématicien britannique Andrew Wiles en 1994.
Théorème de WilsonEn mathématiques, plus précisément en arithmétique élémentaire, le théorème de Wilson énonce qu'un entier p plus grand que 1 est premier si et seulement si la factorielle de p – 1 est congrue à –1 modulo p. Cette caractérisation des nombres premiers est assez anecdotique et ne constitue pas un test de primalité efficace. Son principal intérêt réside dans son histoire et dans la relative simplicité de son énoncé et de ses démonstrations. Ici, le symbole « ! » désigne la fonction factorielle et le symbole « .
Test de primalité de Lucas-LehmerLe test de primalité de Lucas-Lehmer est une méthode pour tester la primalité d'un entier n, connaissant les facteurs premiers de n – 1. Un entier n > 2 est premier si et seulement si il existe un entier a, strictement compris entre 1 et n, tel que et, pour tout facteur premier q de n – 1, Par exemple, prenons n = 2017, n – 1 = 2016 = 2×3×7. a = 2 ne convient pas car 2 ≡ 1 (mod n). a = 3 non plus car 3 ≡ 1 (mod n) Essayons a = 5 (pour calculer rapidement mod n les puissances voulues, on peut utiliser la méthode d'exponentiation rapide et de plus, calculer d'abord 5) : Donc 2017 est premier.
Primality certificateIn mathematics and computer science, a primality certificate or primality proof is a succinct, formal proof that a number is prime. Primality certificates allow the primality of a number to be rapidly checked without having to run an expensive or unreliable primality test. "Succinct" usually means that the proof should be at most polynomially larger than the number of digits in the number itself (for example, if the number has b bits, the proof might contain roughly b2 bits).
Pierre de FermatPierre de Fermat, né dans la première décennie du , à Beaumont-de-Lomagne (département actuel de Tarn-et-Garonne), près de Montauban, et mort le à Castres (département actuel du Tarn), est un magistrat, polymathe et surtout mathématicien français, surnommé « le prince des amateurs ». Il est aussi poète, habile latiniste et helléniste, et s'est intéressé aux sciences et en particulier à la physique ; on lui doit notamment le principe de Fermat en optique.
Algorithme d'Euclide étenduEn mathématiques, l'algorithme d'Euclide étendu est une variante de l'algorithme d'Euclide. À partir de deux entiers a et b, il calcule non seulement leur plus grand commun diviseur (PGCD), mais aussi un de leurs couples de coefficients de Bézout, c'est-à-dire deux entiers u et v tels que au + bv = PGCD(a, b). Quand a et b sont premiers entre eux, u est alors l'inverse pour la multiplication de a modulo b (et v est de la même façon l'inverse modulaire de b, modulo a), ce qui est un cas particulièrement utile.
Indicatrice d'Eulervignette|upright=1.5|Les mille premières valeurs de φ(n). En mathématiques, l'indicatrice d'Euler est une fonction arithmétique de la théorie des nombres, qui à tout entier naturel n non nul associe le nombre d'entiers compris entre 1 et n (inclus) et premiers avec n. Elle intervient en mathématiques pures, à la fois en théorie des groupes, en théorie algébrique des nombres et en théorie analytique des nombres. En mathématiques appliquées, à travers l'arithmétique modulaire, elle joue un rôle important en théorie de l'information et plus particulièrement en cryptologie.
Multiplicative group of integers modulo nIn modular arithmetic, the integers coprime (relatively prime) to n from the set of n non-negative integers form a group under multiplication modulo n, called the multiplicative group of integers modulo n. Equivalently, the elements of this group can be thought of as the congruence classes, also known as residues modulo n, that are coprime to n. Hence another name is the group of primitive residue classes modulo n. In the theory of rings, a branch of abstract algebra, it is described as the group of units of the ring of integers modulo n.
Exponentiation modulaireEn mathématiques, plus précisément en arithmétique modulaire, l’exponentiation modulaire est un type d'élévation à la puissance (exponentiation) réalisée sur des entiers modulo un entier. Elle est particulièrement utilisée en informatique, spécialement dans le domaine de la cryptologie. Etant donnés une base b, un exposant e et un entier non nul m, l'exponentiation modulaire consiste à calculer c tel que : Par exemple, si b = 5, e = 3, et m = 13, le calcul de c donne 8.
Théorème de Lagrange sur les groupesvignette|Si G est le groupe des entiers modulo 8, alors {0, 4} forme un sous-groupe H. Sur l'exemple, {0, 4} contient 2 éléments et 2 divise 8. En mathématiques, le théorème de Lagrange sur les groupes énonce un résultat élémentaire fournissant des informations combinatoires sur les groupes finis. Le théorème doit son nom au mathématicien Joseph-Louis Lagrange. Il est parfois nommé théorème d'Euler-Lagrange car il généralise un théorème d'Euler sur les entiers.