Théorème de Banach-SchauderEn analyse fonctionnelle, le théorème de Banach-Schauder, également appelé théorème de l'application ouverte, est un résultat fondamental qui affirme qu'une application linéaire continue surjective entre deux espaces de Banach (ou plus généralement : deux espaces vectoriels topologiques complètement métrisables) est ouverte. C'est une conséquence importante du théorème de Baire, qui affirme que dans un espace métrique complet, toute intersection dénombrable d'ouverts denses est dense.
Continuous functions on a compact Hausdorff spaceIn mathematical analysis, and especially functional analysis, a fundamental role is played by the space of continuous functions on a compact Hausdorff space with values in the real or complex numbers. This space, denoted by is a vector space with respect to the pointwise addition of functions and scalar multiplication by constants. It is, moreover, a normed space with norm defined by the uniform norm. The uniform norm defines the topology of uniform convergence of functions on The space is a Banach algebra with respect to this norm.
Polar topologyIn functional analysis and related areas of mathematics a polar topology, topology of -convergence or topology of uniform convergence on the sets of is a method to define locally convex topologies on the vector spaces of a pairing.
Espace de MontelEn topologie des espaces vectoriels, on appelle espace de Montel un espace vectoriel topologique localement convexe séparé, tonnelé et dont tout fermé borné est compact. Le nom provient du mathématicien Paul Montel. Tout espace de Montel est réflexif et quasi complet. Son dual fort est un espace de Montel. Le quotient d'un espace de Fréchet-Montel par un sous-espace fermé peut n'être pas réflexif, et a fortiori ne pas être un espace de Montel (en revanche, le quotient d'un espace de Fréchet-Schwartz par un sous-espace fermé est un espace de Fréchet-Montel).
Mackey spaceIn mathematics, particularly in functional analysis, a Mackey space is a locally convex topological vector space X such that the topology of X coincides with the Mackey topology τ(X,X′), the finest topology which still preserves the continuous dual. They are named after George Mackey. Examples of locally convex spaces that are Mackey spaces include: All barrelled spaces and more generally all infrabarreled spaces Hence in particular all bornological spaces and reflexive spaces All metrizable spaces.
Espace nucléaireEn mathématiques, et plus précisément en analyse, un espace nucléaire est un espace vectoriel topologique possédant certaines propriétés analogues à celles des espaces de dimension finie. Leur topologie peut être définie par une famille de semi-normes dont la taille des boules unités décroit rapidement. Les espaces vectoriels dont les éléments sont « lisses » en un certain sens sont souvent des espaces nucléaires ; un exemple typique est celui des fonctions régulières sur une variété compacte.
Topological tensor productIn mathematics, there are usually many different ways to construct a topological tensor product of two topological vector spaces. For Hilbert spaces or nuclear spaces there is a simple well-behaved theory of tensor products (see Tensor product of Hilbert spaces), but for general Banach spaces or locally convex topological vector spaces the theory is notoriously subtle. One of the original motivations for topological tensor products is the fact that tensor products of the spaces of smooth functions on do not behave as expected.
Topologies on spaces of linear mapsIn mathematics, particularly functional analysis, spaces of linear maps between two vector spaces can be endowed with a variety of topologies. Studying space of linear maps and these topologies can give insight into the spaces themselves. The article operator topologies discusses topologies on spaces of linear maps between normed spaces, whereas this article discusses topologies on such spaces in the more general setting of topological vector spaces (TVSs).
Espace de Schwartzvignette|Une fonction gaussienne bidimensionnelle est un exemple de fonction à décroissance rapide. En analyse mathématique, l'espace de Schwartz est l'espace des fonctions déclinantes (c'est-à-dire des fonctions indéfiniment dérivables à décroissance rapide, ainsi que leurs dérivées de tous ordres). Le dual de cet espace est l'espace des distributions tempérées. Les espaces et jouent un rôle essentiel dans la théorie de la transformée de Fourier.
ÉquicontinuitéEn analyse, un ensemble de fonctions définies sur un espace topologique et à valeurs dans un espace uniforme est dit équicontinu en un point de l'espace de départ si ces fonctions non seulement sont toutes continues en ce point, mais le sont d'une façon semblable en un sens explicité plus loin. L'ensemble de fonctions sera dit équicontinu tout court s'il est équicontinu en tout point de l'espace de départ. On parle souvent non d'ensemble, mais de famille de fonctions équicontinues ; ce qui importe cependant reste l'ensemble des fonctions de la famille.