Corps de classes de HilbertEn théorie algébrique des nombres, le corps de Hilbert H(K) d'un corps de nombres algébriques K est l'extension abélienne non ramifiée maximale de ce corps de nombres. Cet objet doit son nom au mathématicien allemand David Hilbert. Son étude est à la fois une étape importante, et un archétype, pour la théorie des corps de classes : via l'isomorphisme de réciprocité (symbole d'Artin) de la correspondance du corps de classes, le groupe de Galois Gal(H(K)/K) est isomorphe au groupe des classes du corps K.
Ordre (théorie des anneaux)En mathématiques, un ordre au sens de la théorie des anneaux est un sous-anneau O d'un anneau A tel que l'anneau A est une algèbre de dimension finie sur le corps Q des nombres rationnels, O engendre A sur Q, si bien que QO = A et O est un Z- dans A (c'est-à-dire un Z-sous-module de type fini sans torsion). Les deux dernières conditions signifient qu'additivement, O est un groupe abélien libre engendré par une base du Q-espace vectoriel A.
Gorō ShimuraGorō Shimura (japonais : 志村 五郎 Shimura Gorō), né le à Hamamatsu et mort le , est un mathématicien japonais naturalisé américain. Il termine comme professeur émérite de mathématiques (l'ancienne chaire Michael Henry Strater Chair) à l'université de Princeton. Il est connu d'un plus large public par la conjecture de Shimura-Taniyama-Weil, qui est reliée au dernier théorème de Fermat et qui a été démontrée par Andrew Wiles, après onze ans de travaux, en 1995. It is published from Iwanami Shoten in Japan.
Endomorphisme de FrobeniusEn mathématiques, l'endomorphisme de Frobenius, nommé ainsi en l'honneur de Georg Ferdinand Frobenius, est un endomorphisme d'anneau commutatif défini de façon naturelle à partir de la caractéristique. Il est particulièrement utilisé dans le contexte de la théorie de Galois, soit dans le cas des corps de caractéristique non nulle et plus spécifiquement dans le cas des corps finis et dans la théorie des corps de classes. Si le corps est fini, il s'agit alors d'un automorphisme.
Programme de LanglandsEn mathématiques, le programme de Langlands est encore, au début du , un domaine de recherche actif et fertile en conjectures. Ce programme souhaite relier la théorie des nombres aux représentations de certains groupes. Il a été proposé par Robert Langlands en 1967. La première étape du programme, réalisée bien avant les travaux de Langlands, peut être vue comme la théorie des corps de classes.